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Abstract- We analyse the impatient customers in an infinite capacity M/M/c queue with single working 

vacation, where the server provides service to the customers at a reduced rate rather than stopping the service 

completely during his vacation period. A customer waiting in a queue becomes impatient if he finds the server 

in working vaction period. We constructed the model as a quasi-birth–death process and form the steady state 

equations. We derived the probability generating function for the number of customers present when the server 

is both, in a service period as well as in a working vacation period and obtained various performance measures. 

Stochastic decomposition structures of the queue length and waiting time are derived.  

Keywords: M/M/c queue, Working vacation, Impatient customers, Stochastic decomposition, Generating 

function  

1. INTRODUCTION 

Impatient customers in queuing models occur in 

several life scenarios such as those involving 

impatient telephone switchboard customers, hospital 

emergency rooms handling critical patients and 

inventory systems that store perishable goods. 

Queueing systems with impatient customers have 

been analysed by many authors such as Benjaafar et 

al. (2010) and Bonald et al. (2001), and considered the 

impatience behavior by various directions, due to their 

potential applications in call centers, communication 

networks, production-inventory systems and several 

other areas. The first to investigate the impatient 

phenomenon in queuing models appears to be be 

Palm’s (1953) pioneering work, by considering the 

infinite buffer M/M/c queue where each arriving 

customer remains in the queue until his waiting time 

does not exceed the impatient time which is 

exponentially distributed. Daley (1965) analyzed the 

impatient phenomenon in GI/G/1 queuing system in 

which the customers may leave the system if their 

waiting time is too long before starting or completing 

their service. Delay obtained an integral equation for 

the limiting distribution function and analyzed 

solution for the deterministic and distributed 

impatience. Takacs (1974) further analyzed the M/G/1 

queuing system in which customers sojourn time has a 

static threshold and obtained the actual and virtual 

limiting waiting time distributions. And these results 

are generalized in different direction by several 

authors like Baccelli et al. (1984), Boxma et al. 

(1994), Van Houdt et al. (2003) and Yue et al. (2009).  

In the above mentioned literature, the cause of 

impatience was either a long wait already experienced 

by a customer upon arrival at a queue, or a long wait 

anticipated by a customer upon arrival. However, 

Altman and Yechiali (2006, 2008) studied queuing 

models with impatient customers where the cause of 

impatience becomes the server’s vacation and 

unavailability of server upon arrival. Hence, the cause 

of the impatience is the unavailability of the server. 

The M/M/1, M/G/1 and M/M/c queues were analyzed 

in Altman and Yechiali (2006), whereas M/M/  

queue was studied in Altman and Yechiali (2008). 

Yechiali (2007) investigated the queueing model with 

system disasters where the customers turned to be 

impatient only when the system is down. This work 

was broaden and enhanced by Economou and 

Kapodistria (2010) who studied synchronized 

abandonments in queuing models. Perel and Yechiali 

(2010) analyzed M/M/c queuing system with 

impatient customers operating in a 2-phase (fast and 

slow) Markovian random environment. Customers 

became impatient because of the slow service rate 

when the system works in a slow phase. Yue et al. 

(2016) and Kawanishi (2008) investigated the 

impatience behaviour of a finite capacity multi-server 

queuing system. Yue et al. (2014) derived the closed-

form solution of different performance measures in an 

M/M/1 queue with impatient customers and variant of 

multiple vacation policy. 

In the above mentioned study, we have assumed that 

the server halts service during the vacation. However, 

there are lot of examples where the server does not 

completely stop serving the customers during the 

vacation, rather it will render service at a lower rate to 

the queue. Servi and Finn (2002) were the first to 

introduce this kind of vacation policy, called working 

vacation policy and studied an M/M/1/WV queuing 
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model where service times during a non-vacation 

period, the service times during a working vacation, 

and the vacation times are all assumed to be 

exponentially distributed with different rates. Kim et 

al. (2003), Wu and Takagi (2006) generalized the 

work of Servi and Finn (2002) to an M/G/1 queue 

with working vacation. Baba (2005) extended this 

study by using the matrix-geometric method to a 

GI/M/1 queue with working vacation. Tian et al. 

(2008) investigated the M/M/1 queue with single 

working vacation. Banik et al. (2007) studied the 

GI/M/1/N queue with multiple working vacations and 

computed a series of numerical results. Jain and 

Upadhyaya (2011) analyzed a finite-buffer multi-

server unreliable Markovian queue with synchronous 

working vacation policy. Banik (2010) studied the 

GI/M/1/N and GI/M/1/1 queuing models for single 

working vacation. Recently, Selvaraju and Goswami 

(2013) analysed the M/M/1 queue with single and 

multiple working vacation and impatient customers. 

They computed closed form solution and various 

performance measures with stochastic decomposition 

for both the working vacation policies. 

The model is presented as follows. In section 2, we 

provide the description of the model. We 

formulate the model as a quasi-birth-death process 

and explicit expressions of the stationary probabilities 

are derived. In section 3, stochastic decomposition 

properties are verified. 

2. MODEL DESCRIPTION 

We consider an infinite capacity M/M/1 queuing 

model with working vacation, where the server 

provides service to the customers at a reduced rate 

rather than stopping the service completely during his 

vacation period. The customers arrive according to a 

Poisson process with parameter  . The server serves 

the customers at an exponential rate b  during a non-

vacation period, where we consider the stability 

condition that  =
c b




1 . The service discipline is 

first come first served (FCFS). The server begins a 

working vacation as soon as the system becomes 

unoccupied. The arriving customers during working 

vacation are served at a rate lower than the regular 

service rate. The service times during working 

vacation and vacation times are also assumed to be 

exponentially distributed with rates v  and  , 

respectively.  

A customer waiting in a queue becomes impatient if 

he finds the server in working vacation 

period i.e. if he finds the server serving at rate
v , he 

activates an exponentially distributed impatient timer 

T with parameter . The customer exits the queue and 

never 

returns if its service has not been completed before 

the timer T expires. Thus to conclude that only those 

customers whose arrival occurs during a WV of the 

server, are impatient. This type of impatient policy is 

different from that of the impatient policy studied in 

Altman and Yechiali (2006) in which all arriving 

customers become impatient during the vacation 

period, since a pure vacation policy is considered. The 

interarrival times, service times, vacation duration 

times and impatient time are all taken to be mutually 

independent. 

Let  ( ), 0N t t   be the number of customers in the 

system at time t and J (t) be the state of system at time 

t, where J(t) is defined as follows: 

                   
1 when the servers are a non-vacation period at time t ,

( )
0 when the servers are in WV period at time t.

J t


 


 

Then  ( ( ), ( )), 0N t J t t    is a two dimensional continuous time discrete state Markov chain with state 

space     (0,0) ( , ) , 1, 2,..., 0,1S i j i j    

2.1 The Stationary distribution 

 Let us define the stationary probabilities for a Markov chain   as 

                                         = ( ) = , ( ) = ,ijP P N t i J t j  = 0,1,2,.., = 0,1i j  

Then, the stationary equations are.  
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Now define the (partial) probability generating functions (pgf), for 0 < <1z  

                    

                           
0 ,0

=0

( ) = ,n

n

n

P z z P


    
1 ,1

=1

( ) = ,n

n

n

P z z P


  

with 0 1(1) (1) = 1P P  and 
1

0 ,0

=1

( ) = ,n

n

n

P z nz P


   

Multiplying (2) and (3) with 
nz  and summing over n we get the following differential equation after using (1) 

and rearrangement of terms.  

 

      

0 0 0,0 11

,0

=1

(1 ) ( ) [(1 )( ) ] ( ) [ (1 ) (1 )]

(1 ) ( ) = 0 (7)

v v b

c
n

v n

n

z z P z z z c z P z c z c z P z P

z n c P z

      



         

  
          

  

or   

0 0 0,0 1,1 ,0

=1

(1 )
( ) ( ) = 0 (8)

(1 ) (1 ) ) (1 )

c
nv v b v

n

n

z c cc
P z P z P P n c z P

z z z z z z

     

     

    
          

     


  

 In order to solve the above differential equation we multiply it both sides by  

                      I.F
(1 )

= = (1 )

v c
v

z

z c
dz

z z
e e z z


 

 

  

  




 
   


, we get 

      

0 0,0 1,1

,0

=1

(1 )
(1 ) ( ) =

(1 ) (1 )

( ) (1 )

{

}

c
v

z

v b

c
v

zc
nv

n

n

cd c
e z z P z P P

dz z z z

n c z P e z z
z


 

 


 

 

 

  

 







 
  

          

  

  

 

Integrating from 0 to z, we get   
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0 0,0

0
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(1 )

(1 ) ( ) (1 ) } (9)

c c
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z zz

v

c c
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z zz z
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c
P z e z z P e z z dz

c
P P e z z dz Q z e z z dz

 
   

   

 
   

   

 



   

  


 

  



 


 

     
 



 
                                 

1 ,0

=1

 ( ) = ( ) (10)
c

n

n

n

where Q z n c z P

    

0 0,0 0,0 1,1

(1 )
( ) = (1 ) ( ) ( ) ( ) (11)

c
v

v b vc c
P z z z P A z P P B z C z




   

   


   

     
  

                   

( )

0

( ) 1

0

( )

1

0

 

1

( ) = (1 ) (12)

( ) = (1 ) (13)

1

( ) = ( ) (1 ) (14)

c
v

z z X

c
v

z z X

c
v

z z X

where

A z e X X dX

B z e X X dX

C z Q X e X X dX


 

 


 

 


 

 









 



















               

 Now, determine 0( )P z  for 1limz  gives  

 

 0 0 0,0 0,0 1,1
1 1

(1 )
( ) = (1) = (1) (1) (1) (1 )lim lim

v b v

z z

c c
P z P P A P P B c z



  

   



 

  
     
  

 

 

 Since 0 ,0

=0

0 (1) = 1n

n

P P


   and 1(1 ) = ,lim z z






   so we must have the term  

 0,0 0,0 1,1

(1 )
(1) (1) (1) = 0v b vc c

P A P P B C
  

   

 
   
 

 

 or  

                              

1,1 0,0

(1) (1) (1 )
= (15)

(1) (1)

v v

b b b

C A c
P P

B B

  

  

 
  
 

 

 

Using (14) in (10), we get  
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0 0,0
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( ) = ( ) ( ) ( ) ( ) (1 ) (16)

(1) (1)

c
v

v vc A C
P z A z B z P B z C z z z

B B




  

 

    
       

    
  

 

  Multiplying (5) and (6) by 
nz  and summing over n, we get after using (4)  

1 0 0,0 1,1 ,1

=1

(1 )( ) ( ) = ( ) (1 ) (1 ) ( ) (17)
c

n

b b b n

n

z z c P z z P z z z P zP z n c z P            
Using (13) and (15) , we get  

 

1 1

1 0,0

(1) (1) ( ) (1 ) ( )
( ) = ( ) ( 1) (1 ) (18)

(1) (1)
{ }v v

o

b b b b

z C A z c z Q z
P z P z z z P z z

c c B B c c

  


   

   
      

 
                

.1

=1

 

( ) = ( ) (19)
c

n

n

n

where

Q z n c P z
  

Theorem 2.1.1 If <1  and 0 < < v  , then the probability 0,0P  is given by  

   

 

1

0,0

(1)
( ) ( ) (1) (1) ( ) ( )( )

(1)
= (20)
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( )(2 ) ( ) ( )( )

(1)

v
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C
c Q Q c c

B
P

c A
c c c c

B


             




           



        

       

 

Proof.  Applying L'Hosipital rule to (10), we get  

0,0 0,0 1,1 1

0
1 1

(1 )
(1 ) ( )(1 )

( ) = (21)lim lim

(1 )

v b v

z z v

c c
P z P P z Q z z

P z

c z z

  

   

 

 

 

  
      

  

 

which gives 
                                                            

    

0 0,0 1,1(1) = (1 ) (22)bP c P P   

  

Similarly from (17), we get  

  

      
0 0 0,0 1,1

1
1 1

( ) ( ) [ (1 )]
( ) = (1)lim lim

(1 ) ( )

b b

z z
b b

P z z P z P z z P
P z Q

z z c c

    

     

      
 

    
 

 

 Applying (21),we get  
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 which implies that  

0 1 0,0(1) = (1) (2 ) (1) (23)b bc
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From (7), we get  
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v v b v
z z c z P z c z c z P z P

P z Q z
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Applying L-hospitals rule, we get 
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(1)

1(1 )
(1) = lim z
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Therefore using (21), we get  

0 0,0 1

0
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 From (22) and (23)  

 
0 0,0 1
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 Which simplifies to  
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 Hence putting 1,1P  in terms of 0,0 ,P  we get the expression for 0,0P  as  

1
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2.2. Performance measures  

From (21) the equilibrium probability that the system is in working vacation is                 

0 0,0

(1) (1)
(1) = (26)

(1) (1)

v vcC A
P P

B B

 

 


and the probability that the system is in non vacation period is  
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1 0,0

(1) (1)
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 The mean number of customers when the system is on WV vacation period is  

 

0 0 0,0 0,0

(1) (1)
( ) = (1) = 1 (2 ) (1) (28)

(1) (1)

b v v bc cC A
E N P P c P Q

B B

    

   

   
      

   
 

 and the expected number of customers when the server is on non vacation period is  

 

1 1 0 0,0 0,0
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( ) = (1) = ( ) = 1 (1) (29)

(1) (1)

b v v

b b b

c cC A c
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Hence the steady state mean number of customers in the system is  

 

0 1( ) = ( ) ( )E N E N E N  

0,0 0,0

1 1 (1) (1)
= ( ) 1 (2 ) 1 1 (1) (30)

(1) (1)

v v b
b
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c P c P Q
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Using little formula,the mean waiting time in the system can be obtained as  

 
( )

( ) =
E N

E W


 

 Another importance measure  

 

,1

1
( ) = , = 0,1,2,... (31)n

b

n
E W n





 

We derive ,0( )nE W  by using the method of Altman and Yechiali (2006). 
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E W
n n

n
E W

n n

n
E W

n n



       



       



       



       





 
 

        

 
  

        

 
  

        

 
 

       



  

 The second term above follows from the fact that a new arrival does not change the waiting time of a customer 

present in the system, while the third term takes into consideration that only n customers can abandon the 

system as our customer is not impatient.  
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 For j=0 and n=0,  

       

0,0 0,0

1 1 1
( ) = ( )

v v b v v

E W E W
 

                

   
     

              
  

 which can be simplied to  

    0,0

1
( ) (33)

v v b

E W
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 Finally we get the mean waiting time of customers served by the system as  
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 which after using (30) becomes  
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3. STOCHASTIC DECOMPOSITIONS RESULTS   

Theorem 3.1. 2 For <1 ,the stationary queue length N can be decomposed into a sum of two independent 

random variables as = c dN N N  where cN  is the queue length of a classical M/M/c queue with vacation 

and cN  is the additional queue length due to effect of SWV with its PGF  
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International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

 

268 

 

Proof.                           
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 0( )P z and 1( )P z  are positive, as they are PGFs and so 0( )P z + 1( ) > 0P z  and for 0 < <1z  and <1 , 

1
> 0

1 z





 
 
 

. Therefore ( )dN z  is positive. Also, for z=1, (1) = 1dN . Hence ( )dN z  is a PGF.   

Theorem 3.2. 3 If <1,  the stationary waiting time can be decomposed into a sum of two independent 

random variable as = c dW W W ,  Where cW  is the waiting time of a customer corresponding to classical 

M/M/c queue and has exponential distribution with parameter (1 )b   and dW  is the additional delay due 

to the effect of SWV with its Laplace stieltjes transform (LST)  

          

0,0*

0

0,0

0,0 0,0

) ( )
( ) = 1

( )

(1)(1)
( ) 1 1 (36)
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Proof. From the distributional form of little's law, in Keilson and Servi (1988), we have the relation ( )N z = 

* ( (1 ))dW z  . Let s= (1 )z   which gives z= (1 )
s


  and 1 =

s
z


 .Putting these values in (35), we get 

the desired expression.  
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