
International Journal of Research in Advent Technology, Vol.7, No.6, June 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

49

doi: 10.32622/ijrat.76201929



Abstract— Aspect Mining is the search for

candidate aspects in existing software systems and

isolating them from the system into separately

described aspects. A number of aspect mining

techniques (AMT) have been proposed in literature for

identifying crosscutting concerns. Software Evolution

based Aspect Mining (SEAM) is also an AMT that

identifies candidate aspects from version archives of

software. The candidate aspects from two open source

projects have been identified to assess the applicability

of SEAM. One of the major limitation of most of the

AMTs that have been proposed in literature is that no

validation of their result is provided. In this paper, the

evaluation of results produced by SEAM is presented.

The evaluation process determines if the candidate

aspects recommended by SEAM actually contain

crosscutting functionality. The accuracy of

recommendations produced by SEAM is determined by

comparing the results of SEAM with the results of a

benchmarking tool.

Index Terms— Aspect mining, cross-cutting concern,

version history mining, software evolution.

I. INTRODUCTION

Aspect mining is defined as a specialized reverse

engineering process, which aims at investigating legacy

systems (source code) in order to discover which parts

of the system can be crosscutting concern i.e. candidate

aspect [1]. SEAM is used for mining candidate aspects

from version history files [2]. In this approach, while

mining aspects from legacy code, the source files that

have been changed frequently and set of source code

files that have been changed together frequently during

the evolution of system are mined. Mined frequent

change patterns are then visualized for structural

relationship. On the basis of the structural relationship

between the files, candidate aspects are recommended

Manuscript revised June 8, 2019 and published on July 10, 2019

Dr. Yasmin Shaikh, Assistant Professor at International Institute of

Professional Studies (IIPS), Devi Ahilya Vishwavidyalaya (DAVV),

Indore

Dr. Sanjay Tanwani, Professor & Head at School of Computer

Science & IT, Devi Ahilya University, Indore.

for the pattern. Two types of candidate aspects are

reported – simple candidate aspects and complex

candidate aspects.

In order to assess the applicability of the SEAM in

aspect mining and validate the proposed algorithms,

SEAM is applied on the version histories of two open

source software namely, JHotDraw and Weka written

in Java [3]. The simple and complex aspect candidate

aspects are identified for both the systems and top

ranked candidate aspects are listed. A systematic

technique to collect data from version archives is also

proposed. A detailed data preprocessing approach is

introduced. An algorithm is proposed to map the

version archive data in the form of transactions. The

results are extremely useful in guiding software

maintenance process and enhance maintainability of

software. The results produced by SEAM for

JHotDraw and Weka shows that the approach can be

applied easily to any project with rich development

history maintained in the form of CVS or SVN.

In this paper, first the candidate aspects are

determined using a benchmarking aspect mining tool

FINT [4]. In the next phase, the recommendations

made by SEAM are compared with the

recommendations made by FINT. Two predictability

measures, precision and recall are used to determine the

accuracy of results produced by SEAM.

The rest of the paper is organized as follows: Section

2 includes related work. In Section 3, predictability

validation is presented. Section 4 includes result

analysis and discussion. Section 5 draws conclusions

from the presented analysis.

II. RELATED WORK

Breu et al. have developed an approach of

identifying aspects from the version history [5]. It

states that crosscutting functionality does not exist

from the beginning. Instead, it is introduced over time.

They analyzed CVS repository and identified those

changes that are likely to introduce crosscutting

concerns. It is assumed that two method calls that are

inserted together in the same transaction are related to

each other. This observation is used to mine pairs of

functions that form usage patterns from version

archives [6]. History-based aspect mining (HAM)

identifies and ranks crosscutting concerns by analyzing

Evaluation of Software Evolution based Aspect Mining

Technique

Dr. Yasmin Shaikh, Dr. Sanjay Tanwani

International Journal of Research in Advent Technology, Vol.7, No.6, June 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

50

doi: 10.32622/ijrat.76201929

where developers add code to a program [7].

A concern mining technique named COMMIT

(Concern Mining using Manual Information over

Time) analyzes the source code history to statistically

cluster functions, variables, types, and macros that have

been changed intentionally [8]. The links between the

clusters represent the seed. The approach is based on

clustering references that have been added or removed

together.

FINT is an aspect mining tool i.e. a tool for

identifying crosscutting concerns from Java code [4].

It is implemented as Eclipse plug-in.

FINT implementation includes three source code

analysis techniques to identify crosscutting concerns:

Fan-in analysis, grouped calls analysis, and

redirections finder. The first two techniques look for

concerns that are implemented as scattered method

calls, such as logging, exception wrapping,

authentication/ authorization, and so on. Redirection

finder is a technique to identify wrapper classes, such

as instances of the decorator pattern.

III. PREDICTABILITY VALIDATION

To assess the applicability of SEAM, candidate

aspects of two open source software JhotDraw and

Weka are mined using SEAM. The experimental

results produced by applying the techniques to both the

software are evaluated. The predictability of the

recommendations is evaluated by comparing with the

known aspects of the system. In the evaluation process,

the aspects from the systems under experiment are

extracted using a freely available aspect mining tool

FINT [4]. The resulting candidate aspects are compared

with the candidate aspects recommended by SEAM.

Two predictability measures, precision and recall are

used to determine the accuracy of results produced by

SEAM.

Precision is a common performance measure. In the

present context, precision refers to how well the

frequent patterns generated from version history

uncover the crosscutting concerns. Recall is the ratio of

the number of correctly identified crosscutting

concerns to the number of all crosscutting concerns

existing in the system. Thus, it is a measure to find how

well the technique works in determining crosscutting

concerns. The correctness of recommended candidate

aspects is determined by comparing them with the

known aspects of the system.

Formally, precision (m, sc) for any candidate aspect

m and strongly change coupled set sc is the fraction of

number of correctly identified candidate aspects from

sc to the number of files that are strongly change

coupled. correct (m, sc) is the set of correctly identified

crosscutting concerns. The recall (m, sc) is the fraction

of correctly identified crosscutting concerns from sc to

all the possible crosscutting concerns in sc_tot.

 ()
 ()

 (1)

 ()
 ()

 (2)

Precision is used to evaluate the proposed technique

in two ways: First to determine the accuracy of the

technique and secondly to determine the limit of

accuracy. To determine the accuracy of SEAM, the

candidate aspects of each project are computed. Then

the structural relationship is visualized among the

strongly change coupled files and these aspects are

classified into true and false crosscutting concern.

The recall value is computed on the basis of how

many crosscutting concerns have been detected from

all the existing crosscutting concerns in the system. To

compute recall value, all the existing crosscutting

concerns in the system are required to be known

beforehand. But to have the knowledge of the existing

crosscutting concerns of the system is nearly

impossible for a real world industry size project. So, a

completely correct recall value cannot be determined.

The limit of precision and recall is determined by

evaluating how many frequent patterns are never

crosscutting concerns and how many files that may

contain crosscutting concerns are never included in the

results of1 SEAM. We denote these two measures by

precisionlim and recalllim. Formally, precisionlim is the

fraction of the total number of files contained in a set of

strongly change coupled files sc to the number of files

that actually contains crosscutting functionality cc. The

limit of recall can be defined as recalllim is the fraction

of the total number of crosscutting concerns in sc to the

number of crosscutting concerns being identified cc.

The experimental results are validated using precision

as a measure of performance. The results of experiment

are compared with known aspects in the systems i.e. the

results produced by FINT.

A. Simple Candidate Aspects

A simple candidate aspect is a set of strongly change

coupled files with structural relationship between them

[2]. To extract simple candidate aspects, the maximal

frequent itemsets (MFSs) is considered and the logical

coupling among files is determined. The logical

coupling is determined by visualizing the coupling

relationship between files in the pattern [9].

Fig. 1 shows the precision value of simple candidate

aspects generated from different size of frequent

patterns. The X-axis shows the size of the pattern and

Y-axis shows the average precision percent of the

results of simple candidate aspects. Each line of the

graph shows the precision of results for one of the

International Journal of Research in Advent Technology, Vol.7, No.6, June 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

51

doi: 10.32622/ijrat.76201929

Figure 1: Precision for Simple Candidate Aspects

system under consideration. The precision stays almost

flat between the second largest pattern and the pattern

of size two. The precision falls greatly at pattern size

one as there is no strongly change coupled files at size

one.

B. Pruning

While finding simple candidate aspects, the maximal

frequent itemsets (MFSs) is considered and the logical

coupling among files is determined [2]. Since all the

subsets of frequent pattern are also frequent (A priori

principle) so the algorithm starts with MFS. After

finding the relationship among change prone files in

MFS the remaining patterns are filtered. All the

patterns that are subsets of MFS are pruned from the

candidate set. The pruning step eliminates the

redundant patterns from being considered again, thus,

improves the efficiency of algorithm. From the

remaining frequent patterns, the MFS is considered and

the process is repeated.

As pruning is applied while determining simple

candidate aspects, a limited number of candidates

remain in the subsequent passes. The results of pruning

are shown in Fig. 2. The X-axis shows the size of

frequent patterns. Y-axis shows the percentage of

candidate patterns remained after pruning for each

system. The pruning step reduces the number of

candidate patterns significantly.

C. Complex Candidate Aspects

Crosscutting functionality cut across several files so

combining simple candidate and then obtaining

structural relationship among them finds complex

candidate aspects [2].

For determining complex candidate aspects the set of

frequent patterns (FS) is used. The union of set of files

in FS is taken incrementally and candidate sets are

generated to determine coupling relationship and

crosscutting concerns in them.

Fig. 3 and Fig. 4 show the precision of results for

complex candidate aspects in Weka and in JHotDraw

respectively. The X-axis shows the size of the pattern

and Y-axis shows the average precision value of the

results of complex candidate aspects. The average

precision of complex candidate aspects is higher for

small sized patterns. As the size grows the precision

percent falls and it lies around 50%.

IV. RESULTS AND DISCUSSION

The evaluation process reveals that the precision of

candidate aspects recommended by SEAM lies in the

range of 60% to 100%. The frequent patterns were

generated from size one to size eight. There is no

coupling in the patterns of size one so the precision at

this level is not significant. For patterns of size two to

seven, the precision is 100% that shows a high level of

accuracy in result.

The precision of complex candidates, in both the

systems under experiment, lies between 40% to 80%.

Since the number of complex candidate aspect is very

less, the interesting patterns out of these patterns can be

manually identified.

Pruning is applied on set of frequent patterns after

every iteration. It eliminates the patterns that have

already been considered for candidate aspect. It

significantly improves the efficiency of algorithm. It is

evident from the results of pruning that it reduces

significant number of patterns from being reconsidered.

Overall, the recommendations made by SEAM have

higher precision value so it can be applied to any

software having rich version history. Also, since

SEAM does not involve investigation of source code, it

is scalable to industry-size projects.

0

20

40

60

80

100

8 7 6 5 4 3 2 1P
re

ci
si

o
n

 p
er

ce
n

t

Size of Pattern

Precision for Simple Candidate Aspect

Weka

 JHotDraw

International Journal of Research in Advent Technology, Vol.7, No.6, June 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

52

doi: 10.32622/ijrat.76201929

0
10
20
30
40
50
60
70
80

11 17 20 24 27 30 35 38 42

A
v

er
a

g
e

P
re

ci
si

o
n

 P
er

ce
n

t

Size of Pattern

 Precision for Complex Candidate Aspects

JHotDraw

0
10
20
30
40
50
60
70
80
90

100

8 7 6 5 4 3 2 1

%
 o

f
ca

n
d

id
a

te
s

re
m

a
in

ed

a
ft

er
 p

ru
n

in
g

Size of pattern

Impact of Pruning

Weka

JHotDraw

Figure 1: Impact of pruning on patterns from MFS.

Figure 2: Precision for complex candidate aspects for Weka System.

Figure 1: Precision for complex candidate aspects for JHotDraw system.

0

20

40

60

80

100

9 13 17 19 21 23 24 25 26A
v
er

ag
e

P
re

ci
si

o
n

 P
er

ce
n

t

Size of Pattern

 Precision for Complex Candidate Aspects

Weka

nternational Journal of Research in Advent Technology, Vol.7, No.6, June 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

53

doi: 10.32622/ijrat.76201929

Author-1

Photo

Author-2

Photo

V. CONCLUSION

In this paper, the results produced by SEAM, when applied

to two open source software, are validated. The results of

validation process shows that SEAM can identify candidate

aspects from legacy systems efficiently and with high

precision. Most of the existing aspect mining techniques are

platform specific. SEAM is applied on version history

extracted from software repository to generate frequent

pattern and candidate aspects. Thus, generation of candidate

aspects is not platform specific.

The limitation faced while validating the result of SEAM is

that very few aspect mining tools are available. Also no such

commercial tool is available for validation of result.

Therefore, only the results of FINT are used for comparing

and validating the results of SEAM.

REFERENCES

[1] Deursen A.V, Marin M, Moonen L. ―Aspect Mining and Refactoring.‖

Proceedings of the 1st International Workshop on Refactoring:

Achievements, Challenges, Effects (REFACE), with WCRE, 2003.

[2] Shaikh Yasmin, Tanwani Sanjay. ―Software Evolution-based Aspect

Mining: A Novel Approach.” International Journal of Data Mining
and Emerging Technologies, vol. 7, no. 2, pp. 97-106, 2017

[3] Shaikh Yasmin, Tanwani Sanjay.. Assessing Applicability of Software

Evolution based Aspect Mining Approach. International Journals of
Management, IT & Engineering, vol. 8, no. 7, pp. 375-399, 2018.

[4] Marin M, Moonen L, Deursen A.V. ―FINT: Tool Support for Aspect

Mining.‖ IEEE 13th Working Conference on Reverse Engineering, pp.

299-300, 2006.

[5] Breu S, Zimmermann T. ―Identifying Crosscutting Concerns from

History.” Softwaretechnik-Trends, vol. 26, no. 2, 2006.

[6] Williams C.C, Hollingsworth J. K. ―Recovering System Specific Rules

from Software Repositories.‖ Proc. Intl. Workshop on Mining Software

Repositories, pp. 1-5, 2005

[7] Breu S, Zimmermann T. ―Mining Aspects from Version History.‖

Proc. 21st IEEE/ACM International Conference on Automated

Software Engineering, pp. 221-230, 2006

[8] Adams B, Jiang Z.M, Hassan A.E. ―Identifying Crosscutting Concerns

using Historical Code Changes.‖ Proc. 32nd ACM/IEEE International

Conference on Software Engineering, vol. 1, pp. 305-314, 2010

[9] Pinzger M, Gall H, Fischer M. ―Towards an Integrated View on

Architecture and its Evolution.‖ Electronic Notes in Theoretical

Computer Science, vol. 127, no. 3, pp. 183-196, 2

AUTHORS PROFILE

Dr. Yasmin Shaikh is working as Assistant Professor at

International Institute of Professional Studies (IIPS), Devi
Ahilya Vishwavidyalaya (DAVV), Indore and carries

teaching experience of over thirteen years. She has

published several research papers in reputed journals and
conference proceedings.

Dr. Sanjay Tanwani is Professor & Head at School of

Computer Science & IT, Devi Ahilya University, Indore.

He has more than 30 years of teaching experience
including three years of industry experience. He has

published several research papers in reputed journals and

conference proceedings. He has supervised several Ph. D.
students. He has reviewed research papers of reputed

journals. He has been a member of professional bodies
like, IEEE and ACM since last more than 12 year

