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 

Abstract— The solutions of many advanced engineering 

problems like Fick‘s second law, heat and mass transfer 

problems, vibrating beams problems contains error and 

complementary error function. When we use any integral 

transform to solve these types of problems, it is very 

necessary to know the integral transform of error function. In 

this article, we find the Shehu transform of error and 

complementary error functions. To demonstrate the 

usefulness of Shehu transform of error function, some 

numerical applications are considered in application section 

for solving improper integrals which contain error function. 

It is pointed out that Shehu transform give the exact solution 

of improper integral which contains error function without 

any tedious calculation work. 

 

IndexTerms— Complementary error function, Error 

function, Improper integral, Shehu transform.  

 

AMS Subject Classification: 44A05, 44A20, 44A35. 

I. INTRODUCTION 

Integral transforms are highly efficient for solving many 

advance problems of science and engineering such as 

radioactive decay problems, heat conduction problems, 

problem of motion of a particle under gravity, vibration 

problems of beam, electric circuit problems and population 

growth problems. Many researchers applied different 

integral transforms (Laplace transform [1-2], Fourier 

transform [2], Kamal transform [3-10, 48-49], Aboodh 

transform [11-16, 50-52], Mahgoub transform [17-25, 

45-47],  Mohand transform [26-29, 36, 53-56],  Elzaki 

transform [37-40, 57-59], Shehu transform [41-43, 60] and 

Sumudu transform [44, 61-62]) and solved differential 

equations, delay differential equations, partial differential 

equations, integral equations, integro-differential equations 

and partial integro-differential equations. Sudhanshu et al. 

[30-35] discussed the comparative study of Mohand and 

other transforms (Laplace transform, Kamal transform, 

Elzaki transform, Aboodh transform, Sumudu transform and 

Mahgoub transform).  

Error function occurs frequently in probability, physics, 

thermodynamics, statistics, mathematics and many 

engineering problems like heat conduction problems, 

vibrating beams problems etc. The error function is also 

known as the probability integral. The error function is a 

special function because it cannot be evaluated by usual 
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methods of integration. Mathematically error and 

complimentary error functions are defined by [63-68] 
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The Shehu transform of the function  ( ) for all     is 

defined as [60]: 

 

 * ( )+  ∫  ( )  
  

   
 

 
  (   )          (3)                                                                                                                             

where operator   is called the Shehu transform operator. 

The main purpose of the present article is to determine Shehu 

transform of error function and explain the importance of 

Shehu transform of error function by giving some numerical 

applications in application section of this paper. 

II. SOME USEFUL PROPERTIES OF SHEHU TRANSFORM 

2.1 Linearity property [41-43]: 

If Shehu transform of functions    ( )  and 

  ( ) are    (   ) and   (   )  respectively then Shehu 

transform of ,   ( )     ( )-  is given by ,    (   )  
   (   )-  where     are arbitrary constants. 

Proof: By the definition of Shehu transform, we have  

 * ( )+  ∫  ( )  
  

   
 

 

 

  *   ( )     ( )+  ∫ ,   ( )     ( )- 
 

  

   
 

 

 

  *   ( )     ( )+ 

  ∫   ( ) 
 

  

   
 

 

  ∫   ( ) 
 

  

   
 

 

 

  *   ( )     ( )+    *  ( )+    *  ( )+ 
  *   ( )     ( )+      (   )     (   )   
where     are arbitrary constants. 

2.2 Change of scale property: 

If Shehu transform of function  ( ) is  (   ) then Shehu 

transform of function  (  ) is given by  
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Proof: By the definition of Shehu transform, we have  
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Put             in equation( ), we have  
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2.3 Shifting property:  

If Shehu transform of function  ( ) is  (   )  then Shehu 

transform of function     ( )is given by  (      )  
 Proof: By the definition of Shehu transform, we have  

Shehu Transform of Error Function (Probability Integral) 
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2.4 Shehu transform of the derivatives of the 

function  ( ) [41-43]: 

If  * ( )+   (   ) then  
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2.5 Shehu transform of integral of a function  ( ): 

If  * ( )+   (   ) then  2∫  ( )  
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2.6 Convolution theorem for Shehu transforms [42-43]: 

If Shehu transform of functions    ( )  and 

  ( ) are    (   ) and   (   )  respectively then Shehu 

transform of their convolution   ( )    ( ) is given by  
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Proof: By the definition of Shehu transform, we have 
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By changing the order of integration, we have 
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Put       so that       in above equation, we have 
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III. SHEHU TRANSFORM OF FREQUENTLY ENCOUNTERED 

FUNCTIONS [41-43] 
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IV. SOME IMPORTANT PROPERTIES OF ERROR AND 

COMPLEMENTARY ERROR FUNCTIONS 

4.1 The sum of error and complementary error functions 

is unity: 
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4.2 Error function is an odd function: 

   (  )      ( ) 

4.3 The value of error function at     is  : 

   ( )   . 

4.4 The value of complementary error function at     

is  : 

    ( )   . 

4.5 The domain of error and complementary error 

functions is (    )  
4.6    ( )         . 

4.7     ( )         . 

4.8 The value of error functions    ( ) for different 

values of   [64]: 

Table: 2 

S.N.      ( ) 



International Journal of Research in Advent Technology, Vol.7, No.6, June 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

 

56 

 

 

doi: 10.32622/ijrat.76201932 

1. 0.00 0.00000 

2. 0.02 0.02256 

3. 0.04 0.04511 

4. 0.06 0.06762 

5. 0.08 0.09008 

6. 0.10 0.11246 

7. 0.12 0.13476 

8. 0.14 0.15695 

9. 0.16 0.17901 

10. 0.18 0.20094 

11. 0.20 0.22270 

V. SHEHU TRANSFORM OF ERROR FUNCTION 

By equation (1), we have  
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Applying Shehu transform both sides on equation ( ), we get 
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Applying the linearity property of Shehu transform on 

equation (6), we get 
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VI. SHEHU TRANSFORM OF COMPLEMENTARY ERROR 

FUNCTION 

We have,     (√ )      (√ )    

     (√ )       (√ )                                    (8) 

Applying Shehu transform both sides on equation ( ), we 

have  
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Applying the linearity property of Shehu transform on 

equation ( ), we get 
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VII. APPLICATIONS 

In this section, some applications are given in order to explain 

the advantage of Shehu transform of error function for 

evaluating the improper integral, which contain error 

function. 

7.1 Evaluate the improper integral  
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7.2 Evaluate the improper integral  
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By the definition of Shehu transform, we have 
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Now by equations (14) and (15), we get 

∫   
  

 

 

 

{∫    (√ )  
 

 

}    
    

  √(   )
 

Taking .
 

 
/    in above equation, we have 

  ∫    
 

 

{∫    (√ )  
 

 

}    
 

√ 
  

7.4 Evaluate the improper integral  
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Now by change of scale property of Shehu transform, we 

have 

 {   ( √ )}  
 

 
[

    

(   )√(     )
] 

  {   ( √ )}  
     

 √(    )
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By the definition of Shehu transform, we have 
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7.5 Evaluate the improper integral  
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By convolution theorem of Shehu transform, we have  
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Now by the definition of Shehu transform, we have 
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Now by equations (18) and (19), we get 
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VIII. CONCLUSION 

In this article, we have successfully discussed the Shehu 

transform of error function. The given numerical applications 

in application section show the advantage of Shehu transform 

of error function for evaluating the improper integral, which 

contain error function. Results of numerical applications 

show Shehu transform give the exact solution without any 

tedious calculation work. In future, Shehu transform can be 

used in solving vibrating beam problems, heat and mass 

transfer problems. 
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