η-dual of Generalized Difference Sequence Spaces

A. A. Ansari, S. K. Srivastava and N. K. Yadav

Abstract

The notion of α - Köthe Toeplitz dual was generalized by Tripathy and Chandra [11] to introduce η-dual. In this paper we give η-dual of sequence spaces $\square_{v, s}^{m}\left(l_{\infty}\right), \square_{v, s}^{m}(c)$ and $\square_{v, s}^{m}\left(c_{0}\right)$.

Keywords: Difference sequence space, duals. 2000 Mathematics Subject Classification: 40A05, 46A45.

\section*{1. INTRODUCTION}

Let l_{∞}, c and c_{0} be the linear spaces of bounded convergent and null sequences $x=\left(x_{k}\right)$ with complex term respectively norm by

$$
\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|
$$

where $k \in N=\{1,2,3, \ldots\}$ the set of positive integer.
In 1981, Kizmaz [8] introduce the concept of difference sequence and have defined \sqcup - bounded, \sqcup - convergent and $\sqcup-$ null sequence spaces. Using the concept of difference sequence Cólak [3] has defined $\square^{m}-$ bounded \square^{m} - convergent and \square^{m} - null sequence spaces. Further this notion was generalized by Et. and Esi [5] and have defined \square_{v}^{m} - bounded, \square_{v}^{m} - convergent and \square_{v}^{m} - null sequence spaces, where $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex number's. Later on Bektas and Cólak [2] have defined \square_{r}^{m} - bounded, $\square_{r}^{m}-$ convergent and $\square_{r}^{m}-$ null sequence spaces.

Recently Ansari and Chaudhary [1] have defined the following sequence spaces.

Let $v=\left(v_{k}\right)$ be any fixed sequence of non-zero complex number, then
$\square_{v, s}^{m}\left(l_{\infty}\right)=\left\{x=\left(x_{k}\right):\left(k^{s} \square_{v}^{m} x_{k}\right) \in l_{\infty}\right\}$

[^0]\[

$$
\begin{aligned}
& \square_{v, s}^{m}(c)=\left\{x=\left(x_{k}\right):\left(k^{s} \square_{v}^{m} x_{k}\right) \in c\right\} \\
& \square_{v, s}^{m}\left(c_{0}\right)=\left\{x=\left(x_{k}\right):\left(k^{s} \square_{v}^{m} x_{k}\right) \in c_{0}\right\}
\end{aligned}
$$
\]

where $m \in N, s \in R$,
$\square_{v, s}^{m}(x)=\left(k^{s} \square_{v}^{m} x_{k}\right)=k^{s}\left(\square_{v}^{m-1} x_{k}-\square_{v}^{m-1} x_{k+1}\right)$
and $\square_{v}^{m} x_{k}=\sum_{j=1}^{m}(-1)^{j}\left(j^{m}\right) v_{k+j} x_{k+j}$.
These are Banach spaces with norm

$$
\|x\|_{v, s}=\sum_{c=1}^{m}\left|v_{i} x_{i}\right|+\sup _{k}\left|k^{r} \square_{v}^{m} x_{k}\right| .
$$

It is trivial that $c_{0}\left(\square_{s}^{m}\right) \subset c_{0}\left(\square_{s}^{m+1}\right), c\left(\square_{s}^{m}\right) \subset c\left(\square_{s}^{m+1}\right)$, $l_{\infty}\left(\square_{s}^{m}\right) \subset l_{\infty}\left(\square_{s}^{m+1}\right)$ and $c_{0}\left(\square_{s}^{m}\right) \subset c\left(\square_{s}^{m}\right) \subset l_{\infty}\left(\square_{s}^{m}\right)$.

Lemma 1.1. [1] $\sup _{k} k^{s} \square_{v}^{m} x_{k} \mid<\infty$ iff
(i) $\sup _{k} k^{s-1} \square_{v}^{m-1} x_{k} \mid<\infty$
(ii) $\sup _{k} k^{s} \square_{v}^{m-1} x_{k}-k(k+1)^{-1} \square_{v}^{m-1} x_{k+1} k \infty$

Corollary 1.2. [1] $x \in \square_{v, s}^{m}\left(l_{\infty}\right)$ implies $\sup _{k} k^{s-m}\left|v_{k} x_{k}\right|<\infty$.

2. MAIN RESULTS

Definition 2.1. [11] Let E be a sequence space, then the η-dual of E is defined as
$E^{\eta}=\left\{a=\left(a_{k}\right): \sum\left|a_{k} x_{k}\right|^{r}<\infty, r \geq 1\right\}$.
Definition 2.2. [11] Let E be a sequence space. Then E is called a perfect space iff $E=E^{\eta \eta}$.

Lemma 2.3. [11]
(i) E^{η} is a linear subspace of w for $E \subset w$
(ii) $E \subset F$ implies $E^{\eta} \supset F^{\eta}$ for every $E, F \subset w$
(iii) $\left(E^{\eta}\right)^{\eta}=E^{\eta \eta} \supset E$ for every $E \subset w$
(iv) $\left(\underset{j}{\cup} E_{j}\right)^{\eta}=\bigcap_{j} E_{j}^{\eta}$ for every family $\left\{E_{j}\right\}$ with $E_{j} \subset w$ for all $j \in N$.

Theorem 2.4. Let m be a positive integer and $s \in R$, we put

$$
M_{\eta}(v, s)=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty}\left(k^{m-s}\right)^{r}\left|a_{k} v_{k}^{-1}\right|^{r}<\infty\right\} .
$$

Then,

$$
\begin{equation*}
\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta}=\left[\square_{v, s}^{m}(c)\right]^{\eta}=\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta}=M_{\eta}(v, s) \tag{2.1}
\end{equation*}
$$

Proof. First we assume that $a \in M_{\eta}(v, s)$. Then
$\left|a_{k} x_{k}\right|^{r}=\left|k^{m-s} a_{k} v_{k}^{-1} k^{s-m} x_{k} v_{k}\right|^{r}=\left(k^{m-s}\right)^{r}\left|a_{k} v_{k}^{-1}\right|^{r}\left|k^{s-m} x_{k} v_{k}\right|^{r}$ or
$\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|^{r}=\sum_{k=1}^{\infty}\left(k^{m-s}\right)^{r}\left|a_{k} v_{k}^{-1}\right|^{r}\left|k^{s-m} x_{k} v_{k}\right|^{r}<\infty$ for each
$x \in \rrbracket_{v, s}^{m}\left(l_{\infty}\right)$, by corollary 1.2. Thus, we have to shown
$M_{\eta}(v, s) \subset\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta}$,
conversely, let $a \notin M_{\eta}(v, s)$, then for some k, we have
$\sum_{k=1}^{\infty}\left(k^{m-s}\right)^{r}\left|a_{k} v_{k}^{-1}\right|^{r}=\infty$.

So, there is a strictly increasing sequence $\left(n_{i}\right)$ of positive integer n_{i}, such that
$\sum_{k=n_{i}}^{n_{i+1}}\left(k^{m-s}\right)^{r}\left|a_{k} v_{k}^{-1}\right|^{r}>i^{r}$.
$k=n_{i}+1$
We defined as a sequence $x=\left(x_{k}\right)$ by
$x_{k}= \begin{cases}0 & \left(1 \leq k \leq n_{k}\right) \\ \frac{v_{k}^{-1} k^{m-s}}{i^{r}} & \left(n_{i}+1<k \leq n_{i+1}: i=1,2, \ldots\right) .\end{cases}$
Then, we see that
$k^{s} \square^{m} v_{k} x_{k} \left\lvert\,=\frac{m!}{i^{r}}\left(n_{i}+1<k \leq n_{i+1}, i=1,2, \ldots\right)\right.$.

Hence,
$x \in \square_{v, s}^{m}\left(c_{0}\right)$ and $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|>\sum 1=\infty$.

Thus, $a \notin\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta}$, and hence, we have shown

$$
\begin{equation*}
\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta} \subset M_{\eta}(v, s) . \tag{2.3}
\end{equation*}
$$

Since
$\square_{v, s}^{m}\left(c_{0}\right) \subset \square_{v, s}^{m}(c) \subset \square_{v, s}^{m}\left(l_{\infty}\right)$
implies
$\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta} \subset\left[\square_{v, s}^{m}(c)\right]^{\eta} \subset\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta}$
(2.1) follows from (2.2) and (2.3).

Theorem 2.5. Let m be a positive integer and $s \in R$, we put

$$
\begin{align*}
& M_{\eta \eta}=\left\{a=\left(a_{k}\right): \sup _{k}\left(k^{s-m}\right)^{r}\left|a_{k} v_{k}\right|^{r}<\infty\right\} . \text { Then } \\
& {\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta \eta}=\left[\square_{v, s}^{m}(c)\right]^{\eta \eta}=\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta \eta}=M_{\eta \eta}(v, s) .} \tag{2.4}
\end{align*}
$$

Proof. First we assume that $a \in M_{\eta \eta}(v, s)$. Then
$\left|a_{k} x_{k}\right|^{r}=\left|k^{s-m} a_{k} v_{k} k^{m-s} x_{k} v_{k}^{-1}\right|^{r}$

$$
=\left(k^{s-m}\right)^{r}\left|a_{k} v_{k}\right|^{r}\left(k^{m-s}\right)^{r}\left|x_{k} v_{k}^{-1}\right|^{r} \text { or, }
$$

$\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|^{r}<\sup _{k}\left(k^{s-m}\right)^{r}\left|a_{k} v_{k}\right|^{r} \sum_{k=1}^{\infty}\left(k^{m-s}\right)^{r}\left|x_{k} v_{k}^{-1}\right|^{r}<\infty$ for each $x \in\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\alpha}=M_{\eta}(v, s)$ by using (2.1). Thus, we have shown
$M_{\eta \eta}(v, s) \subset\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta \eta}$.
Conversely, let $a \notin M_{\eta \eta}(v, s)$. Then, we have
$\sup _{k}\left(k^{s-m}\right)^{r}\left|a_{k} v_{k}\right|^{r}=\infty$.

Hence, there is strictly increasing sequence $(k(i))$ of positive integer $k(i)$ such that
$\left\{[k(i)]^{s-m}\right\}^{r}\left|a_{k(i)} v_{k(i)}\right|^{r}>i^{m r}, \quad r>1$.

Then, we see that

Available online at www.ijrat.org

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left(k^{m-s}\right)^{r}\left|x_{k} v_{k}^{-1}\right|^{r} & =\sum_{i=1}^{\infty}\left\{[k(i)]^{m-s}\right\}^{r}\left|a_{k(i)} v_{k(i)}\right|^{r} \\
& \leq \sum_{i=1}^{\infty} i^{-m r}<\infty
\end{aligned}
$$

Hence, $x \in\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta}$ and

$$
\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|^{r}=\sum_{i=1}^{\infty} 1=\infty
$$

Thus $a \notin \square_{v, s}^{m}\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta \eta}$ and hence we have to shown

$$
\begin{equation*}
\left[\square_{v, r}^{m}\left(l_{\infty}\right)\right]^{\eta \eta} \subset M_{\eta \eta}(v, s) . \tag{2.6}
\end{equation*}
$$

Since,
$\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta} \subset\left[\square_{v, s}^{m}(c)\right]^{\eta} \subset\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta}$
implies
$\left.\left[\square_{v, s}^{m}\left(c_{0}\right)\right]^{\eta \eta} \subset \square_{v, s}^{m}(c)\right]^{\eta \eta} \subset\left[\square_{v, s}^{m}\left(l_{\infty}\right)\right]^{\eta \eta}$,
(2.4) follows from (2.5) and (2.6).

By definition 2.2., we also have

Corollary 2.6. The sequence spaces $\square_{v, s}^{m}\left(l_{\infty}\right), \square_{v, s}^{m}(c)$ and $\square_{v, s}^{m}\left(c_{0}\right)$ are not perfect.

REFERENCES

[1] Ansari, A. A.; Chaudhary, V. K. (2012): On Köthe toeplitz duals of some new and generalized difference sequence spaces, Italian J. Pure and Appl. Maths, 29, pp. 135-148.
[2] Bektas, C. A.; Còlak, R. (2005): On some generalized difference sequence spaces, Thai J. of Math., 3(1), pp. 83-89.
[3] Còlak, R. (1989): On some generalized sequence spaces, Commu. Fac. Sci. Unir. Anic Series A1 38, pp. 35-46.
[4] Còlak, R.; Et., M. (1997): On some generalized difference sequence spaces and related matrix transformation, Hokk. Math. J., 26, pp. 483-492.
[5] Et. Mikail; Esi, A. (2000): On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sc. Soc., 23(2), pp. 25-32.
[6] Et. Mikail (1993): On some difference sequence spaces, Doğa- Tr. J. of Math., 17, pp. 18-24.
[7] Et. Mikail; Còlak, R. (1995): On some difference sequence spaces, Soochow J. of Math., 25(4), pp. 377-386.
[8] Kizmaz, H. (1981): On certain sequence spaces, Canadian Math. Bull., 24(2), pp. 169-176.
[9] Kamthan, P. K.; Gupta, M. (1981): Sequence spaces and series, Marcel Dekker Inc., New York.
[10] Sarigol, M. A. (1987): On difference sequence spaces, J. Kara deniz Tec. Univ. Fac. Arts Sci. Ser. Math. Phys., 10, pp. 63-71.
[11] Tripathy, B. C.; Chandra, P. (2002): On Generalized Köthe-Toeplitz duals of some sequence spaces, Ind. J. Pure and Appl. Math., 33(8), pp. 1301-1306.
[12] Wilansky, A. (1984): Summability through Functional Analysis, North Holland.

[^0]: Manuscript revised June 9, 2019 and published on July 10, 2019
 A. A. Ansari, and, Department of Mathematics \& Statistics, DDU Gorakhpur University,Gorakhpur, India, aaansari@in.com.
 S. K. Srivastava, Department of Mathematics \& Statistics, DDU Gorakhpur University,Gorakhpur, India, sudhirpr66@ rediffmail.com.
 N. K. Yadav, Department of Mathematics \& Statistics, DDU Gorakhpur University,Gorakhpur, India, nandu85gkp@ gmail.com.

