η-dual of Generalized Difference Sequence Spaces

A. A. Ansari, S. K. Srivastava and N. K. Yadav

Abstract. The notion of α - Köthe Toeplitz dual was generalized by Tripathy and Chandra [11] to introduce η -dual. In this paper we give η -dual of sequence spaces

$$\square_{v,s}^m(l_\infty)$$
, $\square_{v,s}^m(c)$ and $\square_{v,s}^m(c_0)$.

Keywords: Difference sequence space, duals. **2000 MATHEMATICS SUBJECT CLASSIFICATION:** 40A05, 46A45.

1. INTRODUCTION

Let l_{∞} , c and c_0 be the linear spaces of bounded convergent and null sequences $x = (x_k)$ with complex term respectively norm by

$$||x||_{\infty} = \sup_{k} |x_k|$$

where $k \in \mathbb{N} = \{1, 2, 3, ...\}$ the set of positive integer.

In 1981, Kizmaz [8] introduce the concept of difference sequence and have defined \sqcup -bounded, \sqcup -convergent and \sqcup -null sequence spaces. Using the concept of difference sequence Cólak [3] has defined \square^m - bounded \square^m -convergent and \square^m -null sequence spaces. Further this notion was generalized by Et. and Esi [5] and have defined \square^m_r - bounded, \square^m_r - convergent and \square^m_r - null sequence spaces, where $v = (v_k)$ be any fixed sequence of non-zero complex number's. Later on Bektas and Cólak [2] have defined \square^m_r - bounded, \square^m_r - convergent and \square^m_r - null sequence spaces.

Recently Ansari and Chaudhary [1] have defined the following sequence spaces.

Let $v = (v_k)$ be any fixed sequence of non-zero complex number, then

$$\square_{v,s}^m(l_\infty) = \{x = (x_k) : (k^s \square_v^m x_k) \in l_\infty\}$$

Manuscript revised June 9, 2019 and published on July 10, 2019

University, Gorakhpur, India, nandu85gkp@gmail.com.

A. A. Ansari, and, Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India, aaansari@in.com.

S. K. Srivastava, Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur, India, sudhirpr66@rediffmail.com.

N. K. Yadav, Department of Mathematics & Statistics, DDU Gorakhpur

$$\Box_{v,s}^{m}(c) = \{x = (x_k) : (k^s \Box_v^m x_k) \in c\}$$

$$\Box_{v,s}^{m}(c_{0}) = \{x = (x_{k}) : (k^{s} \Box_{v}^{m} x_{k}) \in c_{0}\}$$

where $m \in N$, $s \in R$,

$$\Box_{v,s}^{m}(x) = (k^{s} \Box_{v}^{m} x_{k}) = k^{s} (\Box_{v}^{m-1} x_{k} - \Box_{v}^{m-1} x_{k+1})$$

and
$$\Box_v^m x_k = \sum_{i=1}^m (-1)^j (j^m) v_{k+j} x_{k+j}$$
.

These are Banach spaces with norm

$$||x||_{v,s} = \sum_{c=1}^{m} |v_i x_i| + \sup_{k} |k^r \square_v^m x_k|.$$

It is trivial that $c_0(\square_s^m) \subset c_0(\square_s^{m+1})$, $c(\square_s^m) \subset c(\square_s^{m+1})$, $l_\infty(\square_s^m) \subset l_\infty(\square_s^{m+1})$ and $c_0(\square_s^m) \subset c(\square_s^m) \subset l_\infty(\square_s^m)$.

Lemma 1.1. [1] $\sup_k k^s \bigsqcup_v^m x_k \mid < \infty$ iff

(i)
$$\sup_{k} k^{s-1} \square_{v}^{m-1} x_{k} \mid < \infty$$

(ii)
$$\sup_{k} k^{s} \square_{v}^{m-1} x_{k} - k(k+1)^{-1} \square_{v}^{m-1} x_{k+1} \mid < \infty$$

Corollary 1.2. [1] $x \in \bigcup_{v,s}^m (l_\infty)$ implies $\sup_k k^{s-m} |v_k x_k| < \infty$.

2. MAIN RESULTS

Definition 2.1. [11] Let E be a sequence space, then the η -dual of E is defined as

$$E^{\eta} = \{ a = (a_k) : \sum |a_k x_k|^r < \infty, r \ge 1 \}.$$

Definition 2.2. [11] Let E be a sequence space. Then E is called a perfect space iff $E = E^{\eta\eta}$.

Lemma 2.3. [11]

(i) E^{η} is a linear subspace of w for $E \subset w$

International Journal of Research in Advent Technology, Vol.7, No.6, June 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

(ii) $E \subset F$ implies $E^{\eta} \supset F^{\eta}$ for every $E, F \subset W$

(iii)
$$(E^{\eta})^{\eta} = E^{\eta\eta} \supset E$$
 for every $E \subset w$

(iv)
$$(\bigcup_j E_j)^\eta = \bigcap_j E_j^\eta$$
 for every family $\{E_j\}$ with $E_j \subset w$ for all $j \in N$.

Theorem 2.4. Let *m* be a positive integer and $s \in R$, we put

$$M_{\eta}(v,s) = \{ a = (a_k) : \sum_{k=1}^{\infty} (k^{m-s})^r \mid a_k v_k^{-1} \mid^r < \infty \}.$$

Then,

$$\left[\Box_{v,s}^{m}(l_{\infty}) \right]^{\eta} = \left[\Box_{v,s}^{m}(c) \right]^{\eta} = \left[\Box_{v,s}^{m}(c_{0}) \right]^{\eta} = M_{n}(v,s). \tag{2.1}$$

Proof. First we assume that $a \in M_n(v, s)$. Then

$$|a_k x_k|^r = |k^{m-s} a_k v_k^{-1} k^{s-m} x_k v_k|^r = (k^{m-s})^r |a_k v_k^{-1}|^r |k^{s-m} x_k v_k|^r$$

$$\sum_{k=1}^{\infty} |a_k x_k|^r = \sum_{k=1}^{\infty} (k^{m-s})^r |a_k v_k^{-1}|^r |k^{s-m} x_k v_k|^r < \infty \quad \text{for} \quad \text{each}$$

 $x \in \mathbb{I}^m_{v,s}(l_\infty)$, by corollary 1.2. Thus, we have to shown

$$M_n(v,s) \subset \left[\square_{v,s}^m(l_\infty)\right]^{\eta},$$
 (2.2)

conversely, let $a \notin M_n(v,s)$, then for some k, we have

$$\sum_{k=1}^{\infty} (k^{m-s})^r |a_k v_k^{-1}|^r = \infty.$$

So, there is a strictly increasing sequence (n_i) of positive integer n_i , such that

$$\sum_{k=n_{i}+1}^{n_{i+1}} (k^{m-s})^{r} |a_{k}v_{k}^{-1}|^{r} > i^{r}.$$

We defined as a sequence $x = (x_k)$ by

$$x_k = \begin{cases} 0 & (1 \le k \le n_k) \\ \frac{v_k^{-1} k^{m-s}}{i^r} & (n_i + 1 < k \le n_{i+1} : i = 1, 2, \ldots). \end{cases}$$

Then, we see that

$$k^{s} \square^{m} v_{k} x_{k} \mid = \frac{m!}{i^{r}} (n_{i} + 1 < k \le n_{i+1}, i = 1, 2, ...).$$

Hence,

$$x \in \mathbb{I}_{v,s}^m(c_0)$$
 and $\sum_{k=1}^{\infty} |a_k x_k| > \sum_{k=1}^{\infty} 1 = \infty$.

Thus, $a \notin [\square_{v,s}^m(l_\infty)]^{\eta}$, and hence, we have shown

$$\left[\square_{v,s}^{m}(c_0)\right]^{\eta} \subset M_n(v,s). \tag{2.3}$$

Since

$$\square_{v,s}^m(c_0) \subset \square_{v,s}^m(c) \subset \square_{v,s}^m(l_\infty)$$

implies

$$\left[\square_{v,s}^m(l_\infty)\right]^{\eta} \subset \left[\square_{v,s}^m(c)\right]^{\eta} \subset \left[\square_{v,s}^m(c_0)\right]^{\eta}$$

(2.1) follows from (2.2) and (2.3).

Theorem 2.5. Let m be a positive integer and $s \in R$, we put

$$M_{\eta\eta} = \{a = (a_k) : \sup_k (k^{s-m})^r \mid a_k v_k \mid^r < \infty\}.$$
 Then

$$[\square_{v,s}^m(l_\infty)]^{\eta\eta} = [\square_{v,s}^m(c)]^{\eta\eta} = [\square_{v,s}^m(c_0)]^{\eta\eta} = M_{\eta\eta}(v,s). \ (2.4)$$

Proof. First we assume that $a \in M_{\eta\eta}(v,s)$. Then

$$|a_k x_k|^r = |k^{s-m} a_k v_k k^{m-s} x_k v_k^{-1}|^r$$

= $(k^{s-m})^r |a_k v_k|^r (k^{m-s})^r |x_k v_k^{-1}|^r$ or,

$$\sum_{k=1}^{\infty} |a_k x_k|^r < \sup_k (k^{s-m})^r |a_k v_k|^r \sum_{k=1}^{\infty} (k^{m-s})^r |x_k v_k^{-1}|^r < \infty \text{ for }$$

each $x \in [\mathbb{D}^m_{v,s}(c_0)]^\alpha = M_\eta(v,s)$ by using (2.1). Thus, we have shown

$$M_{nn}(v,s) \subset \left[\square_{v,s}^{m}(c_0)\right]^{\eta\eta}. \tag{2.5}$$

Conversely, let $a \notin M_{\eta\eta}(v, s)$. Then, we have

$$\sup_{k} (k^{s-m})^r \mid a_k v_k \mid^r = \infty.$$

Hence, there is strictly increasing sequence (k(i)) of positive integer k(i) such that

$$\{[k(i)]^{s-m}\}^r \mid a_{k(i)}v_{k(i)}\mid^r > i^{mr}, \qquad r > 1.$$

Then, we see that

International Journal of Research in Advent Technology, Vol.7, No.6, June 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

$$\begin{split} \sum_{k=1}^{\infty} (k^{m-s})^r \mid x_k v_k^{-1} \mid^r &= \sum_{i=1}^{\infty} \{ [k(i)]^{m-s} \}^r \mid a_{k(i)} v_{k(i)} \mid^r \\ &\leq \sum_{i=1}^{\infty} i^{-mr} < \infty. \end{split}$$

Hence, $x \in [\square_{v,s}^m(l_\infty)]^\eta$ and

$$\sum_{k=1}^{\infty} |a_k x_k|^r = \sum_{i=1}^{\infty} 1 = \infty.$$

Thus $a \notin \mathbb{I}^m_{v,s}[\mathbb{I}^m_{v,s}(l_\infty)]^{\eta\eta}$ and hence we have to shown

$$\left[\square_{v,r}^{m}(l_{\infty})\right]^{\eta\eta} \subset M_{nn}(v,s). \tag{2.6}$$

Since,

$$\left[\square_{v,s}^m(l_\infty)\right]^{\eta} \subset \left[\square_{v,s}^m(c)\right]^{\eta} \subset \left[\square_{v,s}^m(c_0)\right]^{\eta}$$

implies

$$\left[\square_{v,s}^m(c_0)\right]^{\eta\eta} \subset \left[\square_{v,s}^m(c)\right]^{\eta\eta} \subset \left[\square_{v,s}^m(l_\infty)\right]^{\eta\eta},$$

(2.4) follows from (2.5) and (2.6).

By definition 2.2., we also have

Corollary 2.6. The sequence spaces $\Box_{v,s}^m(l_\infty)$, $\Box_{v,s}^m(c)$ and $\Box_{v,s}^m(c_0)$ are not perfect.

REFERENCES

- Ansari, A. A.; Chaudhary, V. K. (2012): On Köthe toeplitz duals of some new and generalized difference sequence spaces, Italian J. Pure and Appl. Maths, 29, pp. 135-148.
- [2] Bektas, C. A.; Còlak, R. (2005): On some generalized difference sequence spaces, Thai J. of Math., 3(1), pp. 83-89.
- [3] Còlak, R. (1989): On some generalized sequence spaces, Commu. Fac. Sci. Unir. Anic Series A1 38, pp. 35-46.
- [4] Còlak, R.; Et., M. (1997): On some generalized difference sequence spaces and related matrix transformation, Hokk. Math. J., 26, pp. 483-492.
- [5] Et. Mikail; Esi, A. (2000): On Köthe-Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sc. Soc., 23(2), pp. 25-32
- [6] Et. Mikail (1993): On some difference sequence spaces, Doğa-Tr. J. of Math., 17, pp. 18-24.
- [7] Et. Mikail; Còlak, R. (1995): On some difference sequence spaces, Soochow J. of Math., 25(4), pp. 377-386.
- [8] Kizmaz, H. (1981): On certain sequence spaces, Canadian Math. Bull., 24(2), pp. 169-176.
- [9] Kamthan, P. K.; Gupta, M. (1981): Sequence spaces and series, Marcel Dekker Inc., New York.
- [10] Sarigol, M. A. (1987): On difference sequence spaces, J. Kara deniz Tec. Univ. Fac. Arts Sci. Ser. Math. Phys., 10, pp. 63-71.
- [11] Tripathy, B. C.; Chandra, P. (2002): On Generalized Köthe-Toeplitz duals of some sequence spaces, Ind. J. Pure and Appl. Math., 33(8), pp. 1301-1306.
- [12] Wilansky, A. (1984): Summability through Functional Analysis, North Holland.