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n—dual of Generalized Difference Sequence Spaces

A. A. Ansari, S. K. Srivastava and N. K. Yadav

Abstract. The notion of a— Kothe Toeplitz dual was
generalized by Tripathy and Chandra [11] to introduce
n—dual. In this paper we give 7—dual of sequence spaces

0 (), 075 (c) and 074 (co) -
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1. INTRODUCTION

Let I, cand c, be the linear spaces of bounded convergent
and null sequences x = (X, ) with complex term respectively
norm by

I XIIw=Slip| X |

where k e N ={1,2,3,.. } the set of positive integer.

In 1981, Kizmaz [8] introduce the concept of difference
sequence and have defined L/—bounded, |/— convergent and
LU—null sequence spaces. Using the concept of difference

sequence Colak [3] has defined [O™— bounded

0™ —convergent and 0™ —null sequence spaces. Further this
notion was generalized by Et. and Esi [5] and have defined

0"~ bounded, [,"— convergent and [ null sequence
spaces, where v=(v,) be any fixed sequence of non-zero
complex number’s. Later on Bektas and Coélak [2] have
defined 0"— bounded, [/"— convergent and (" null
sequence spaces.

Recently Ansari and Chaudhary [1] have defined the
following sequence spaces.

Let v=(v,) be any fixed sequence of non-zero complex
number, then

s (1) ={x = (%) : (KL %) €1}
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s () ={x= (%) : (K°Ly" %) e c}

[0 (o) ={x = (%) : (KLy" %) € ¢}

where me N, seR,

s (0 = (K07 % ) =k° VXA )
m

and 0% = D~ (=17 ("W X
=

These are Banach spaces with norm

m
X lhys= D M [+sup [ K'DJ" % |
) k

It is trivial that c,(O") cc,@M) , c@M) cec@™) ,
L, O <1, (M) and (") < e < 1, (05

Lemma 1.1. [1] SLlip k® [ X, |< oo iff

(i) Sllipks‘1 My <o

(i) supk’ P =K+ D)0 X oo

Corollary 1.2. [1] x €];s(l,,) implies SL:p KS™™ | v, X, |< o0

2. MAIN RESULTS

Definition 2.1. [11] Let E be a sequence space, then the
n—dual of E is defined as

E” ={a=(a,): Zpkxk "< oo,r>1}.

Definition 2.2. [11] Let E be a sequence space. Then E is
called a perfect space iff E=E"".

Lemma 2.3. [11]

(i) E” isa linear subspace of w for E cw
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(i) EcF implies E” o F7 forevery E,F cw
(iii) (E7)" =E™ o E forevery Ecw

(iv) (UE;)" =NE] for every family {E;} with E; cw for
i j

all jeN.

Theorem 2.4. Let m be a positive integer and se R, we put

M, (v.5) ={a=(a): D ™) |ay <o}

k=1

Then,

[V (L)) =0 @1 =[5 ()" =M, (v.5). (2.1)

Proof. First we assume that ae M, (v,s) . Then

| aka |r=| km—sakvk—lks—mxkvk |I‘= (km—s)r I akvk—l |I’| kS—kaVk I
or

o0 0

D B =D K™ [ [Tk ™y ['<oo for each
k=1 k=1

x €1 (1.,) , by corollary 1.2. Thus, we have to shown

M, (v.s) < [V5 (L)Y, (22)

conversely, let a¢ M, (v,s), then for some k, we have

o0

D &) [yt =

k=1

So, there is a strictly increasing sequence (n;) of positive
integer n;, such that
n.
i+1
z (km—S)I’lakvlzllr>ir.

We defined as a sequence x =(X,) by

0 L<k<n)
Xk — Vlzlkmfs

ir
|

(n+1l<k<n,,:i=12..).
Then, we see that

|
KS ™V, %, |:%(ni tl<k<n,,i=12,.).
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Hence,
x €175 (cy) and Z:|ak X, > Zl = o0,
k=1

Thus, a¢[1}(l,,)]” , and hence, we have shown

[0 (€)1” =M, (v, s). (2.3)
Since

[V (Go) s (€) 75 (1)

implies

s (1)) eIV @1 <1y ()T

(2.1) follows from (2.2) and (2.3).

Theorem 2.5. Let m be a positive integer and s € R, we put

M,, ={a= (ak):sﬂp(ks_m)r | 3V [ < oo} Then

[0s (L)1 =7 @1 =[5s ()" =M, (v.5). (2.4)
Proof. First we assume that ae M, , (v,s) . Then
lagx [T =1k Mav k™ x v [

or,
= (™ A IF ™) [yt

o0 o0
D R < sup(k*™)" | ayy [ DK™ vt < oo for
k=1 k=1

each XE[D\TS(CO)]a=M77(V,S) by using (2.1). Thus, we
have shown

M., (v,8) < [0y (Go)I™". (2.5)

Conversely, let ag M, (v,s) . Then, we have

sup(k®™™)" | a vy |"=oo.
k

Hence, there is strictly increasing sequence (k(i)) of positive
integer k(i) such that
{[k(i)]ym}r | A iy V(i) |r >i™, r>1.

Then, we see that
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o0 o0

2K XU = 3 KO e I
) i=1
< Zrmr < o0,
i=1

Hence, x e[ (1,,)]7 and

0 0
Z|akxk = Zl= ©.
k=1 i-1

Thus a &\ [ (1,,)]"" and hence we have to shown
[ ()] =M, (v,5). (2.6)

since,

[V (L)1 <[ @1 <[V (o))"

implies

Vs )] <[5 @17 <[5 (L)1,

(2.4) follows from (2.5) and (2.6).

By definition 2.2., we also have

doi: 10.32622/ijrat.76201946

Corollary 2.6. The sequence spaces Ly’ (l,,) , [ (c) and

Uy's (co) are not perfect.
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