International Journal of Research in Advent Technology, Vol.7, No.5, May 2019

The Mersenne Meet Matrices with A - Sets on Exponential Divisor Closed Sets

Dr. N. Elumalai ${ }^{1}$ And R. Kalpana ${ }^{2}$
1. Associate Professor of Mathematics, A.V.C.College (Autonomous) ,Mannampandal - 609 305, Mayiladuthurai, India. E-mail : nelumalai@rediffmail.com
2. Assistant Professor of Mathematics, Saradha Gangadharan College, Puducherry-605 004. E-mail: mathkalpana@gmail.com

Abstract

Let (P, \wedge) be a meet-semilattice and let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}}\right\}$ be a subset of P. Then S is an A-set if $A=\left\{\mathrm{x}_{\mathrm{i}} \wedge \mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}\right\}$ is a chain. If $f\left(x_{\mathrm{i}} \wedge x_{\mathrm{j}}\right)=2^{\mathrm{xi} \wedge x \mathrm{j}}-1$ then the $\mathrm{n} \times \mathrm{n}$ meet matrix obtained is called the Mersenne meet matrix on S . A recursive structure theorem for Mersenne meet matrices with A-sets on exponential divisor closed set is verified and a recursive formula for $\operatorname{det}\left(S_{f}\right.$ and for $\left(S_{f}\right)^{-1}$ on A-sets is also verified.

Keywords - Meet Matrices, Mersenne Meet Matrices, a- Set, A-Set, Exponential divisors, Exponential divisor closed set

1. INTRODUCTION

Let $(\mathrm{P}, \leq)=\left(\mathrm{P}, \vee, \wedge _\right)$be a locally finite lattice, let $S=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be a subset of P and let $f: P \rightarrow \mathbf{C}$ be a function. The meet matrix $(S)_{f}$ on S with respect to f are defined as $\left((S)_{f}\right) i j=f\left(x_{i} \wedge x_{j}\right)$.

Haukkanen [4] introduced meet matrices $(S)_{f}$ and obtained formulae for $\operatorname{det}(S)_{f}$ and $\left(\mathrm{S}_{f}\right)^{-1}$ (see also [13] and [14]). Korkee and Haukkanen [9] used incidence functions in the study of meet matrices. There we obtained new upper and lower bounds for $\operatorname{det}\left(S_{f}\right.$ and a new formula for $\left(\mathrm{S}_{f}\right)^{-1}$ on meetclosed sets S (i.e., $x i, x j \in S \Rightarrow x i \wedge x j \in S$). Korkee and Haukkanen [12] presented a new method for calculating $\operatorname{det}(S)_{f}$ and $\left(\mathrm{S}_{f}\right)^{-1}$ on those sets S which are not necessarily meet-closed.

We say that S is an \boldsymbol{A}-set if the set $A=\left\{x_{i} \wedge x_{j} / x_{i} \neq\right.$ $\left.x_{j}\right\}$ is a chain (an A-set need not be meet-closed). For example, chains and a-sets (with $A=\{a\}$) are known trivial A sets. Since the method, presented in [12], adapted to A-sets might not be sufficiently effective, we give a new structure theorem for $(S)_{f}$ where S is an A-set. One of its features is that it supports recursive function calls.
By the structure theorem we obtain a recursive formula for $\operatorname{det}(S)_{f}$ and for $\left(\mathrm{S}_{f}\right)^{-1}$ on A-sets. By dissolving the recursion on certain sets we also obtain the known explicit determinant and inverse formulae on chains and a-sets.
$(\mathbf{Z}+, \mid)=(\mathbf{Z}+, \operatorname{gcd}, \mathrm{lcm})$ is a locally finite lattice, where \mid is the usual divisibility relation and gcd and lcm stand for the greatest common divisor and the least common multiple of integers. Thus meet matrices are generalizations of GCD matrices $\left((S)_{f}\right)_{i j}=f\left(\operatorname{gcd}\left(x_{i}, x_{j}\right)\right)$. For general accounts of GCD matrices, see [6]. Meet matrices are also generalizations of GCUD matrices, the unitary analogies of GCD matrices, see [5]. Thus the results also hold for GCUD matrices.

2. DEFINITIONS

Let $(P,<)=(P, \wedge)$ be a meet-semilattice and let S be a nonempty subset of P. We say that S is meet-closed if $\mathrm{x} \wedge \mathrm{y} \in \mathrm{S}$ whenever $\mathrm{x}, \mathrm{y} \in \mathrm{S}$. We say that S is lower-closed if $(x \in S ; y \leq x) \Rightarrow y \in S$ holds for every $y \in P$. It is clear that a lower-closed set is always meet-closed but the converse is not true.
The method used requires that we arrange the elements of S analogously to the elements of chain A.

Definition 2.1

The binary operation Π is defined by $S_{1} \sqcap S_{2}=\left[x \wedge y / x \in S_{1}, y \in S_{2}, x \neq y\right\}$
where S_{1} and S_{2} are nonempty subsets of P.
Let S be a subset of P and let $a \in P$. If $S \sqcap S=\{a\}$, then the set S is said to be an a-set.

International Journal of Research in Advent Technology, Vol.7, No.5, May 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

Definition 2.2

Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}}\right\}$ be a subset of P with $x_{i}<x_{j} \Rightarrow i<j$ and let $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$
be a multichain (i.e. a chain where duplicates are allowed) with $a_{1} \leq a_{2} \leq \ldots \ldots \ldots \leq a_{n-1}$.
The set S is said to be an \boldsymbol{A}-set if
$\left\{x_{k}\right\} \sqcap\left\{x_{k+1}, \ldots \ldots, x_{n}\right\}=\left\{a_{k}\right\}$ for all $k=1,2, \ldots \ldots, n-1$. Every chain $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ is an A-set with $A=S \backslash\left\{x_{n}\right\}$ and every a-set is always an A-set with $A=\{a\}$.

Definition 2.3

An integer $\mathrm{d}=\prod_{i=1}^{t} p_{i}{ }^{a_{i}}$ is said to be an exponential divisor of $\mathrm{m}=\prod_{i=1}^{t} p_{i}{ }^{b_{i}}$, if ai \mid bi for every $1 \leq \mathrm{i} \leq \mathrm{t}$ and is denoted by $\left.\mathrm{d}\right|_{\mathrm{e}} \mathrm{m}$.
A set $S=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ is said to be an exponential divisor closed set if the exponential divisors of every element of S belongs to S. For example $\{12,18,36\}$ is not an exponential divisor closed set. But, $\{6,12,18,36\}$ is an exponential divisor closed set.

Definition 2.4

Let f be a complex-valued function on P. Then the $n \times n$ matrix $(S)_{f}$, where $\left((S)_{f}\right)_{i j}=f\left(x_{i} \wedge x_{j}\right)$, is called the meet matrix on S with respect to f. Also the $n \times n$ matrix $(S)_{f}$,where
$\left((S)_{f}\right)_{i j}=f\left(x_{i} \wedge x_{j}\right)=2^{x i \wedge x j}-1$, is called the Mersenne meet matrix.

3. MERSENNE MEET MATRICES ON A-SETS

3.1 Structure Theorem

Theorem 3.1 (Structure Theorem)

Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an A-set, where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . \mathrm{a}_{\mathrm{n}-1}\right\}$ is a multichain. Let $f_{1}, f_{2, \ldots \ldots .,}, f_{n}$ denote the functions on P defined by $f_{1}=f$ and

$$
\begin{equation*}
f_{k+1}(x)=f_{k}(x)-\frac{f_{k}\left(a_{k}\right)^{2}}{f_{k}\left(x_{k}\right)} \tag{3.1}
\end{equation*}
$$

for $k=1,2, \ldots \ldots \ldots, n-1$.
Then

$$
\begin{equation*}
(S)_{f}=M^{T} D M \tag{3.2}
\end{equation*}
$$

where $D=\operatorname{diag}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots \ldots ., f_{n}\left(x_{n}\right)\right)$ and M is the $n \times n$ upper triangular matrix with 1 's on its main diagonal, and further

$$
\begin{equation*}
(M)_{i j}=\frac{f_{i}\left(a_{i}\right)}{f_{i}\left(x_{i}\right)} \tag{3.3}
\end{equation*}
$$

for all $i<j$. (Note that $f_{1}, \ldots \ldots \ldots, f_{n}$ exist if and only if $\left(f_{k}\left(x_{k}\right)=0, a_{k} \neq x_{k}\right) \Rightarrow f_{k}\left(a_{k}\right)=0$
holds for all $k=1,2, \ldots \ldots ., n-1$. In the case $f_{k}\left(a_{k}\right)=$ $f_{k}\left(x_{k}\right)=0$ we can write e.g. $(M)_{k j}=0$
for all $k<j$.
Proof: Let $i<j$. Then
$\left(M^{\mathrm{T}} D M\right)_{i j}=\sum_{k=1}^{n}(M)_{k i}(D)_{k k}(M)_{k j}$

$$
\begin{equation*}
=f_{i}\left(a_{i}\right)+\sum_{k=1}^{i-1} \frac{f_{k}\left(a_{k}\right)^{2}}{f_{k}\left(x_{k}\right)} \tag{3.4}
\end{equation*}
$$

$$
\begin{aligned}
& =f_{i}\left(a_{i}\right)+\sum_{k=1}^{i-1}\left(f_{k}\left(a_{i}\right)-f_{k+1}\left(a_{i}\right)\right) \\
& =f_{1}\left(a_{i}\right)=f\left(x_{i} \wedge x_{j}\right) .
\end{aligned}
$$

The case $i=j$ is similar, we only replace every a_{i} with x_{i} in (3.4). Since $M^{\mathrm{T}} D M$ is symmetric, we do not need to treat the case $i>j$.

3.2 Determinant of Meet matrix on A-sets

By Structure Theorem we obtain a new recursive formula for $\operatorname{det}(S)_{f}$ on A-sets.

Theorem 3.2 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an
A-set, where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . \mathrm{a}_{\mathrm{n}-1}\right\}$ is a multichain. Let $f_{1}, f_{2}, \ldots \ldots ., f_{n}$ be the functions defined in (3.1). Then

$$
\begin{equation*}
\operatorname{det}(S)_{f}=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots \ldots \ldots f_{n}\left(x_{n}\right) \tag{3.5}
\end{equation*}
$$

By Theorem 3.2 we obtain a known explicit formula for $\operatorname{det}(S)_{f}$ on chains presented in [4, Corollary 3] and [14, Corollary 1].

Corollary 3.1 If $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ is a chain, then $\operatorname{Det}(S)_{f}=f\left(x_{1}\right) \prod_{k=2}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right.$
Proof: By Theorem 3.2 we have
$\operatorname{det}(S)_{f}=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots \ldots \ldots . f_{n}\left(x_{n}\right)$, where
$f_{1}=f$ and $f_{k+1}(x)=f_{k}(x)-f_{k}\left(x_{k}\right)=f(x)-f\left(x_{k}\right)$ for all
$k=1,2, \ldots \ldots \ldots \ldots \ldots, n-1$. This completes the proof.
By Theorem 3.2 we also obtain a known explicit formula for $\operatorname{det}(S)_{f}$ on a-sets. This formula has been presented (with different notation) in [4, Corollary of Theorem 3] and [12,Corollaries 5.1 and 5.2], and also in [2, Theorem 3] in number-theoretic setting.
The case $f(a)=0$ is trivial, since then
$(S)_{f}=\operatorname{diag}\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots \ldots, f\left(x_{n}\right)\right)$
and $\operatorname{det}(S)_{f}=f\left(x_{1}\right) f\left(x_{2}\right) \ldots \ldots f\left(x_{n}\right)$.
Corollary 3.2 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an a-set, where $f(a) \neq 0$.
If $a \in S$ (i.e. $a=x_{1}$), then
$\operatorname{det}(S)_{f}=f(a)\left(f\left(x_{2}\right)-f(a)\right) \ldots\left(f\left(x_{n}\right)-(a)\right)$.

International Journal of Research in Advent Technology, Vol.7, No.5, May 2019
 E-ISSN: 2321-9637

Available online at www.ijrat.org

If $a \notin S$, then

$$
\begin{align*}
\operatorname{det}(S)_{f}= & \sum_{k=1}^{n} \frac{f(a)\left(f\left(x_{1}\right)-f(a)\right) \ldots . .\left(f\left(x_{n}\right)-f(a)\right)}{f\left(x_{k}\right)-f(a)} \\
& +\left(f\left(x_{1}\right)-f(a)\right) \ldots\left(f\left(x_{n}\right)-f(a)\right) . \tag{3.8}
\end{align*}
$$

Example 3.1 Let $(P, \leq \cdot)=(\mathbf{Z}+, \mid)$ and $S=\{2,4,16\}$.
Then $S=\left[\begin{array}{ccc}2^{2}-1 & 2^{2}-1 & 2^{2}-1 \\ 2^{2}-1 & 2^{4}-1 & 2^{4}-1 \\ 2^{2}-1 & 2^{4}-1 & 2^{16}-1\end{array}\right]$.
As S is an A-set with the chain $A=\{2,4\}$ by (3.1) we have $f_{1}=f, f_{2}(x)=f_{1}(x)-f_{1}(2)^{2} / f_{1}(2)$ and $f_{3}(x)=f_{2}(x)-$ $f_{2}(4)^{2} / f_{2}(4)$.
Let $f(x)=2^{\mathrm{x}}-1$. Then
$f_{1}(x)=2^{\mathrm{x}}-1, f_{2}(x)=2^{\mathrm{x}}-4, \quad f_{3}(x)=2^{\mathrm{x}}-16$
and by Theorem $3.1(S)_{f}=\mathrm{M}^{\mathrm{T}} \mathrm{DM}$, where
$\mathrm{D}=\operatorname{diag}(3,12,65520)$ and $\mathrm{M}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
and by Theorem 3.2 we have
$\operatorname{det}(S)_{f}=f_{1}(2) f_{2}(4) f_{3}(16)=3(12)(65520)$

$$
=23,58,720 .
$$

3.3 Inverse of Mersenne meet matrix on A-sets

By Structure Theorem we obtain a new recursive formula for $\left(S_{f}\right)^{-1}$ on A-sets.
Theorem 3.3 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ be an A set,where $A=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . . \mathrm{a}_{\mathrm{n}-1}\right\}$ is a multichain.
Let $f_{1}, f_{2}, \ldots \ldots ., f_{n}$ be the functions defined in (3.1),
where $f_{i}\left(x_{i}\right) \neq 0$ for $i=1,2,, \ldots, n$.
Then $(S)_{f}$ is invertible and $\left(S_{f}\right)^{-1}=N \triangle N^{T}$
where $\Delta=\operatorname{diag}\left(1 / f_{1}\left(\mathrm{x}_{1}\right), 1 / f_{2}\left(\mathrm{x}_{2}\right), \ldots, 1 / f_{n}\left(x_{n}\right)\right)$ and N is the $n \times n$ upper triangular matrix with 1 's on its main diagonal, and further
$(N)_{i j}=-\frac{f_{i}\left(a_{i}\right)}{f_{i}\left(x_{i}\right)} \prod_{k=i+1}^{j-1}\left(1-\frac{f_{k}\left(a_{k}\right)}{f_{k}\left(x_{k}\right)}\right)$
for all $i<j$.
Proof: By Structure Theorem
$(S)_{f}=M^{\mathrm{T}} D M$, where M is the matrix defined in (3.3)
and $D=\operatorname{diag}\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots \ldots . ., f_{n}\left(x_{n}\right)\right)$.
Therefore $\left(S_{f}\right)^{-1}=N \triangle N^{\mathrm{T}}$,
where $\mathrm{D}^{-1}=\operatorname{diag}\left(1 / f_{1}\left(\mathrm{x}_{1}\right), 1 / f_{2}\left(\mathrm{x}_{2}\right), \ldots, 1 / f_{n}\left(x_{n}\right)\right)$ and $M^{-1}=N$ is the $n \times n$ upper triangular matrix in 3.10.

Example 3.1.1

S is considered the same as in Example 3.1 then by $\left(S_{f}\right)^{-1}=N \triangle N^{\mathrm{T}}$,

$$
\begin{aligned}
& \Delta=\operatorname{diag}(1 / 3,1 / 12,1 / 65520)), \quad \mathrm{N}=\mathrm{M}^{-1}, \\
& \mathrm{~N}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right],
\end{aligned}
$$

$$
\left(S_{f}\right)^{-1}=\left[\begin{array}{ccc}
\frac{5}{12} & \frac{-1}{12} & 0 \\
\frac{-1}{12} & \frac{5461}{65520} & \frac{-1}{65520} \\
0 & \frac{1}{65520} & \frac{1}{65520}
\end{array}\right]
$$

Corollary 3.3 Let $S=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be an a-set, where $f(a) \neq 0$ and $f\left(x_{k}\right) \neq f(a)$ for all $k=2, \ldots \ldots$, n. If $a \in S$ (i.e. $\left.a=x_{1}\right)$, then $(S)_{f}$ is invertible and

$$
\begin{align*}
& \left(\left(S_{f}\right)^{-1}\right)_{i j}= \\
& \begin{cases}\frac{1}{f(a)}+\sum_{k=2}^{n} \frac{1}{f\left(x_{k}\right)-f(a)} & \text { if } i=j=1 \\
\frac{1}{f\left(x_{k}\right)-f(a)} & \text { if } 1<i=j \\
\frac{1}{f(a)-f\left(x_{k}\right)} \text { if } 1=i<j=k \text { or } 1=j<i=k \\
0 & \text { otherwise }\end{cases} \tag{3.11}
\end{align*}
$$

If $a \notin S$ and further $f\left(x_{1}\right) \neq f(a)$ and
$\frac{1}{f(a)} \neq \sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}$, then $(S)_{f}$ is invertible and

$$
\begin{align*}
& \left(\left(S_{f}\right)^{-1}\right)_{i j}= \\
& \left\{\begin{array}{l}
\frac{1}{f\left(x_{k}\right)-f(a)}-\frac{1}{\left[f\left(x_{k}\right)-f(a)\right]^{2}} \\
\left(\frac{1}{f(a)}+\sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}\right)^{-1} \quad \text { if } i=j \\
\frac{1}{\left[f\left(x_{k}\right)-f(a)\right]\left[f\left(x_{k}\right)-f(a)\right]} \\
\left(\frac{1}{f(a)}+\sum_{k=1}^{n} \frac{1}{f\left(x_{k}\right)-f(a)}\right)^{-1} \quad \text { if } i \neq j
\end{array}\right. \tag{3.12}
\end{align*}
$$

4. CONCLUSION

In this paper we prove by examples that the Mersenne Meet matrices with A sets on exponential divisor closed set satisfies structure theorem and calculate the determinant and inverse of the matrix through the results based on A sets.

REFERENCES:

[1] M. Aigner, Combinatorial Theory. SpringerVerlag, 1979.
[2] S. Beslin and S. Ligh, GCD-closed sets and the determinants of GCD matrices, Fibonacci Quart., 30: 157-160 (1992).
[3] G.Birkhof, Lattice Theory.American Mathematical Society Colloquium Publications, 25,Rhode Island, (1984).
[4] P. Haukkanen, On meet matrices on ,posets, Linear Algebra Appl. 249: 111-123 (1996).
[5] P. Haukkanen and J. SillanpÄä̈a, Some analogues of Smith's determinant,,Linear and Multilinear Algebra 41: 233-244 (1996).
[6] P. Haukkanen, J.Wang and J.SillanpÄaÄa, On Smith's determinant, Linear Algebra Appl. 258: 251-269 (1997).
[7] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[8] I. Korkee, A note on meet and join matrices and their special cases GCUD and LCUM Matrices, Int. J. Pure Appl.Math.1-11
[9] I. Korkee and P. Haukkanen, Bounds for determinants of meet matrices associated with incidence functions, Linear Algebra Appl. 329(1-3): 77-88 (2001).
[10] I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence functions. Linear Algebra Appl., 372: 127-153 (2003).
[11]I. Korkee, On meet and join matrices on A-sets and related sets, Notes on Number theory and Discrete Mathematics, 10(3):57-67,(2004)
[12] I. Korkee and P. Haukkanen, On meet matrices with respect to reduced,extended and exchanged sets, JP J.Algebra Number Theory Appl., 4(3),559-575 (2004)
[13]B. V. Rajarama Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 158: 77-97 (1991).
[14] B. Wang, Explicit Expressions of Smith's Determinant on a Poset, Acta Math. Sin. (Engl.Ser.), 17(1): 161-168 (2001).
[15]F. Zhang, Matrix theory. Basic results andtechniques, Universitext, Springer-Verlag, New York, 1999.

