
International Journal of Research in Advent Technology, Vol.7, No.5S, May 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

87

A New Proposal with a Cohesion Metric for Finding Complexity

of COTS Components

Dr. Arvind Kumar
1
, Ms. Jyoti sharma

2

1
Assistant Professor, Department of Computer Science and Engineering, SRM University, Delhi-NCR, Sonepat, Haryana

INDIA, k.arvind33@gmail.com
2
Assistant Professor, Department of Computer Science and Engineering, MAIT, Rohini, Delhi

Kaushik.jyoti27@gmail.com

Abstract—In today’s world we are living with a high technological environment surrounded with full of software’s. The
software’s which we are using must be of good quality and of less complexity. The complexity of the software is highly
dependent on the design of the software that we are using and the design is directly proportional to concept of coupling and
cohesion. In this paper, we are giving the usage of already developed cohesion metric in finding the complexity of
commercialized websites or software’s by calculating the complexity of individual components.

Keywords—component, CBSD (Component based software engineering), COTS

1. INTRODUCTION

CBSD is basically the development of the software from
the reusable number of components. The design and formation
of software in this approach is totally based on the number of
reusable components. The CBSE idea is not new. It was given
by Mcllory more than forty years ago. CBSE came in to
existence due to some of the problems faced by the object
oriented paradigm. If any of the development process starts
from scratch, then it is more time consuming as compared to
the CBSE where the components are the reusable entities and
the development process is not starting from the scratch.

There was also a contribution in automated testing of
components as well [25]. Kaur reported that Software
complexity cannot be removed completely but it can be
controlled. But, for controlling the software complexity
effectively, software complexity metrics are required to
measure it. So many researchers have proposed the various
metrics for evaluating and predicting software complexity. This
journal describes various metrics which may be applied for
measuring component complexity [26]. Sirohi have
investigated that when a software system was developed to
ensure the quality, reliability, robustness and functionality of
system testing is necessary. This paper was all about the study
of the component based software engineering and
simultaneously some of the testing techniques. Some of the
testing techniques have been covered in this paper so that in
future any kind of testing techniques can be used according to
the requirement of the situation [27].

2. PROBLEM

A Various number of metrics are available for the calculation

of complexity of the software but the metrics are not capable

of finding the complexity of all types of components. The

calculation of complexity of each of the component is

considered to be important for the future considerations of the

component in development or up gradation of the software.

The main problem is to select the components having which

are less complex, helps in achieving the high performance and

which improves the overall quality of system.

3. RELATED WORK

Some of the researchers have proposed the algorithm for the

efficient retrieval of component from the component

repositories using the Ontology based component retrieval

method and also reviewed the twenty-eight years of CBSE. A

many number of papers for the detailed literature survey for

the CBSE has been considered by the many number of

researchers. Gao and his co team members investigated the

concept of traceable components, demonstrated that how the

various properties of components are investigated to make a

component to be traceable so that it can be easily identified

and used during the development process. The solution given

by him is considered to be very important as it were

supporting the third party software components and check

various component behaviors [17].

After that the class level metrics has been designed and its

scope includes the complicated component based system and

the model on which the whole procedure is based is state

based model. Under this chidamber metric suite the six

metrics has been proposed. For the validation of these metrics

the hypothetical examples were used [18].In 1993 the revised

metric set has been proposed [19].In the proposed set they

have considered the facts and the ancestor classes as well. In

1999 the design level class cohesion metrics came in to

existence in which the metrics are based on path based model

[20].

The complexity metric suite is designed in 2001 in which the

metrics are based on static model. In 2003 the washizaki

metric set for the java components have been designed in

International Journal of Research in Advent Technology, Vol.7, No.5S, May 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

88

which the component observability and component

customizability has been rated. In 2016 the suitability metric

based on state based model and having scope of complicated

component based system has been designed for measuring the

functionality of the component given by the components with

a ratio of functionality of the component required to deliver a

system perfectly.

Importance of A Metric In Calculation of The Complexity

of Software
A wide range of metrics, models are available for

calculating the complexity and reliability, maintainability of
the system and as well as for the CBS. But for consideration of
many numbers of components, a different approach is required.
Determining the component reliability and complexity before
integrating it in to the system are very important factors to be
calculated. However the calculation of the complexity of the
component after integrating in to software is also considered
being important for the further up gradations. This research
paper is a small step to check or to calculate the complexity of
the component by using the already developed metric based on
the concept of coupling and cohesion and the reusable process
approach. Although there are many published articles
addressing the software complexity and reliability metrics in
component based programs, very few papers address the
calculation of complexity of component related to commercial
website. Coupling represents the degree of interdependence
between two software components. The importance of a metric
in calculating the complexity of software can be determined by
following number of points:-

1. The components with the good reusability ratings can
be identified by using the value calculated with the
help of defined metric.

2. Great performance of software can be achieved by
using the metric related to component complexity
calculation.

General working of pc3m metric with replacable number

of parameters
A wide range of metrics, models are available for

calculating the complexity and reliability, maintainability of
the system and as well as for the CBS. An already developed
metric known as PC3M (Package Cohesion Component
complexity metric) is developed to measure the complexity of
the software [2]. The metric can be defined as:-

 DUM:-It is the set of all direct connections between

classes and methods.

NDIUC: -It is the number of used direct or indirect

connections in the case study and it can be calculated as n (n-

1)/2 where n is the total number of packages in the case study.

The formula of n (n-1)/2 has been taken from the concept of

TCC (Tight class cohesion) and LCC (Loose Class Cohesion)

metric

Now both the DUM and IUDM are working to support the

functionality of the component. In the case of COTS

Components

We are not capable of calculating the DUM and IUDM

parameters, but the prediction of size of software can be

estimated with the SLOC (Source Line of Code) parameter.so

the SLOC will be acting as s replaceable parameter here.

The selection of components must be related to the cost of
the particular component. Hence, the SLOC must be divided by
cost of the appropriate components.

PC3M:- Package cohesion component complexity metric.

PC3M =

Where n is the number of elements (classes, methods)

Other cases:-If n=0, there is no element so no possible
relation therefore computed value of PC3M is also 0.

If n=1 means a single element is existing so the relation
existing will also be single, hence the value of PC3M is also
1[2].

After dividing the SLOC by the cost of the particular

component the functionality of the components must be taken

in to concern and the low result values components

corresponding to the high functionality values must be chosen

for the development of the component based software

development.

Usage Of Pc3m Metric In Finding Complexity Of Cots

Components

For finding the complexity of the COTS components using the

replaceable set of parameters in package cohesion component

complexity metric, we must first consider the real data set

as[21]:-

0 if(n=0)

1

SLOC/Co

International Journal of Research in Advent Technology, Vol.7, No.5S, May 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

89

4. RESULTS

The component code for testing of package cohesion

component complexity metric has been taken from the website

bitbucket.org with the availability of source code. This is a

commercial website where the source code of the components

used for making the website is already given with the

specified module. Considering the code for the component 1

like consumers.py.

import jsonfrom channels

import Groupfrom channels.sessions

import channel_session

Connected to websocket.connect

@channel_session

def ws_connect(message, key):

 # Accept connection

 message.reply_channel.send({"accept": True})

Connected to websocket.receive

@channel_session

def ws_message(message, key):

 reply = json.dumps({'status':'ok'})

 message.reply_channel.send({"text": reply})

Connected to websocket.disconnect

@channel_session

def ws_disconnect(message, key):

 message.reply_channel.send({'accept': False})

Now applying the already developed replaceable cohesion

metric on the above real data set of components in which the

SLOC and cost is given.

Number of packages involved=3

Number of classes involved=3

Number of methods involved=2

DUM=3

NDIUC=n(n-1)/2

 3(3-1)/2

 3

PC3M = DUM/NDIUC

 PC3M =1.00

But by using the new replaceable cohesion metric the value

comes out to be as:-

PC3M=SLOC/COST

PC3M 879/9

PC3M = 97.2

Similarly for the other case

PC3M = 925/7

PC3M = 132.14

Therefore high value of PC3M will lead to low complexity of

software and this metric with the replaceable number of

parameters will play an important role in determining the

complexity of the software.

From the above calculation it is concluded that the component

named as manage.py is having the low value of complexity so

that component needs no alteration in further up gradations.

But the component named as consumers.py is having the high

complexity value so this module or this component needs

modification in further consideration for software

development. So the component reusability ratings can be

given as:-

 TABLE I

S.No Name of

Component

Reusability

Ratings

1 Consumers.py 2

2 Manage.py 1

International Journal of Research in Advent Technology, Vol.7, No.5S, May 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

90

In the same way the reusability ratings can also be given to

values calculated using SLOC parameter.The reusability

ratings of component consumers.py are having the rating of 2

because the component complexity value is high for this

component. Therefore the reusability ratings are inversely

proportional to component complexity value.

5. CONCLUSION AND FUTURE WORK

The calculation of component complexity considered to be
important for the further upgradation or the selection of
components from the component repository. The future work
involves the calculation of complexity of components for the
COTS Components.

REFERENCES

[1] P. Goswami and J. Sharma “Package Based Cohesion
measurement in component based software development”,
International Journal of Engineering and Technology, vol.
9, pp. 3172-3182, 2017.

[2] A. Sharma, R. Kumar, and P. S. Grover, “Evaluation of
complexity for software components”, International
Journal of Software Engineering and knowledge
Engineering, vol. 19, pp. 919-931, 2008.

[3] S. Parthipan, S. S. Velan, and C. Babu, “Design level
metrics to measure the complexity across versions of AO
Software”, Proceedings of International Conference on
Advanced Communication Control and Computing
Technologies (ICACCCT), pp. 1708-1713, 2014.

[4] S. Dhawan, and kiran, “Software metrics-A tool for
measuring complexity”, International Journal of Software
and Web Sciences, vol. 2, pp. 4-7, 2012.

[5] A. Dixit, and P. C. Saxena, “Umbrella: A new
component-based software development model”,
International Conference on Computer Engineering and
Applications, vol. 2, pp. 61-65, 2011.

[6] T. J. McCabe, “A complexity measure”, IEEE
Transactions of Software Engineering, vol. 4, pp. 308-
320, 1976.

[7] Gill, K. Geoffrey, Kemerer, and F. Chris, “Cyclomatic
complexity metrics revisited: An Empirical Study of
Software Development and Maintenance”, Cambridge,
mass: centre for information systems research, sloan
school of management, Massachusetts Institute of
Technology, CSIR WP No. 218, 1990.

[8] A. Yadav, and R. A. Khan, “Development of
encapsulated class complexity metric”, Procedia
Technology, vol.4, pp.754-760, 2012.

[9] P. Niranjan, and C.V G. Rao, “A Model software reuse
repository with an intelligent classification and retrieval
technique”, Scientific and Academic Publishing, vol. 1,
pp. 15-21, 2011.

[10] N. Haghpanah, M. S. Moaven, J. Habibi, M. Kargar, and
S. H. Yeganeh, “Approximation algorithms for software
component selection Problem”, Proc. of Asia Pacific
Software Engineering Conference, pp. 159-166, 2007.

[11] L. Yu, K. Chen, and S. Ramaswamy, “Multiple parameter
coupling metrics for layered component based software”,
Software Quality Journal, vol. 17, pp. 5-24, 2009.

[12] J. A. Whittaker, “Software invisible users”, IEEE
Software, vol. 18, pp. 84-88, 2001.

[13] E D. wei, “The software complexity model and metrics
for object oriented”, China English Academic Journals,
pp. 16-18, 2007.

[14] J. Gao, and M. C. Shih, “A Component testability model
for verification and measurement”, Proceedings of the
Annual International Computer Software and Application
Conferences (COMPSAC ’05), vol. 2, pp. 1-9, 2005.

[15] C. Jones, Applied software measurement: Global Analysis
of productivity and quality, McGraw-Hill, New York,
2008.

[16] K. P. Srinivasan, “Unique fundamentals of software
measurement and software metrics in software
engineering”, International Journal of Computer Science
and Information Technology, vol. 7, pp. 29-43, 2015.

[17] J. Gao, and E. Y. Zhu “Monitoring software components
and component based software”, San Jose State
University, pp. 402-412, 2000.

[18] S. R. Chidamber, and C. F. Kemerer, “A Metric suite for
object oriented design”, IEEE Transactions on Software
Engineering, vol. 20, pp. 476-449, 1994.

[19] D. Kafura, and S. Henry, “Software quality metrics based
on interconnectivity”, Journal of Systems and Software,
vol. 2, pp. 121-131, 1981.

[20] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, “A class
cohesion metric for object oriented designs”, Journal of
Object- Oriented Program, vol. 11, pp. 47–52, 1999

[21] R.Kaur and S.Arora, “Fuzzy multi criteria approach for
component selection of fault tolerant system under
consensus recovery block scheme” ICACTA, vol.45,pp.
842-841, 2015.

