Revealing Explanation on Organic Dyes: A Review

Maitri Kagathara, Dipika J. Dalal, and Hitesh A. Solanki

Abstract— Dye is a substance which is used to colour various materials such as textiles, leather, and paper which is not altered with factors such as heat, light, washing, or any other exposure. However, the concept of dyes is completely different from the concept of pigments. Pigments in a nutshell can be defined as a material diffused in liquid forming a paint or ink. Dyes contain organic compound while pigments contain inorganic compound. Natural dyes have the privilege of causing minimal impact on environment, being renewable, sustainable, and safe. The paper here by aims to pile up the particulars of organic dyes, its history, types, sources, preparations and its medicinal use as well as pigments from which we get dyes. It further sheds some light on the comparison of natural dyes and synthetic dyes, concluding with unignorable advantages and disadvantages.

Index Terms- Environment, Medicinal value Organic dyes, Pigments.

I. INTRODUCTION

Green is probably the most common plant colour in most leaves. The green pigment chlorophyll in leaves helps to absorb the energy of the sun and turn it into chemical energy, which is then processed and used as plant food. Flowers colours are adaptations that attract insects and other species, which in effect pollinate and help replicate the plants. Some plants have colourful fruits which attract animals to eat them, spreading the seeds of the plant as they do so inadvertently. Scientists think other pigments may help protect plants from diseases. Given what we know about the role of a few thousand plant pigments, we still have a mystery about the role of most colours in plants (R.Siva, 2007).

While plants show a wide variety of colours, not all these pigments can be used as colours. Some do not dissolve in water, others cannot be adsorbed onto fibres, while others dissolve when washed or exposed to sunlight or air (R.Siva, 2007).

Designers used natural dyes as a design tool in a very effective way. The non-reproducibility and non-uniformity of shades make a unique piece of every development. Different

Manuscript revised on April 03, 2020 and published on April 10, 2020 Maitri Kagathara, Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India. Dipika J. Dalal, Research Scholar, Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad,

India. **Dr. Hitesh A. Solanki,** Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India. design techniques, such as tie-and-dye or sewing, resist, painting, stencilling, batik, Indian Ajrakh, Kalamkari, Ikat, etc., are being practiced by the designers in order to produce unique products (M. L. Gulrajani, 2001).

With over 9000 plants, Turkey is, from the flora standpoint, one of the richest countries in Europe and the Middle East. More than 3000 of these are known as endemics. The number of dye plants in Turkey is relatively high, as a contrast to this floristic richness (Ozlenen Erdem Ismal, 2016).

II. HISTORY

Natural colouring, colours, and dyeing are as common as textiles themselves. It was practised in Europe during the Bronze Age. Dating from 2600 BC, China has found the earliest written record of the use of natural dyes. Dyeing was established as early as in the Indus Valley period (2500 BC); this knowledge was confirmed by discoveries of coloured cloth garments and traces of madder dye in the ruins of Mohenjo-daro and Harappa's Indus Valley Civilization (3500 BC).

Mummies covered in dyed cloth were discovered in Egypt. Chemical tests of red fabrics found in King Tutankhamen's grave in Egypt indicate alizarin, a pigment derived from madder, is present. In more modern times, when he defeated Susa, the Persian, Alexander the Great mentioned having found purple robes dated to 541 BC in the royal treasury. Dyes such as woad, madder, weld, brasil wood, indigo and a deep reddish-purple were identified by the 4th century A.D. Brazil was named after where the woad was found (Gulrajani, M.L., 1992). Even before 2500 BC, Henna was used, while the Bible mentions saffron (M. L. Gulrajani, 2001).

In prehistoric times, for his cave paintings, man used to smash berries to mud pigment. During religious festivals as well as during battles, primitive people used plant dyes to paint animal skin and to their own bodies. They believed the colour would grant them magical powers, shield them from evil spirits and help them attain victory in battle (Oktav Bulut M & Akar E, 2012).

Primitive dyeing methods included pressing plants into fabric to render or rub crushed pigments. With time and techniques, the methods were produced using natural dyes from crushed fruits, berries and other plants, which were boiled into the fabric and gave light and water fastness (resistance).Some of the well-known ancient dyes include madder, a red dye made from the Rubia tinctorum L. roots, blue indigo from the Indigofera tinctoria L. leaves, yellow from the saffron plant stigmas (Crocus sativus L.) and turmeric (Curcuma longa L.) (R.Siva, 2007).

The Englishman Sir William Henry Perkin was only 17 when, in 1856, he found and produced the first synthetic organic dye (mauveine). The hue of Mauveine was identical to that of the ancient "Royal purple" (Tyrian purple) (Vanker, P.S., 2000).

III. TYPES OF NATURAL DYES AND MORDANTS

A. Mordant

Natural colours are substantive and require a mordant to adhere to the fabric, avoiding either fading with light exposure or washing out. Such compounds bind the natural tints to the textiles. Tints require mordants to help them adhere to fabric. If no mordants, such as lichens and walnut hulls, are required, they are called substantive dyes. These are called adjective dyes if they need a mordant. Common mordants are alum (usually used with tartar cream, which helps uniformity and brightens slightly); iron (or copper) (which saddens or dark colours, producing green shades); tin (usually used with tartar cream, which blooms or brightens our colours, especially reds, oranges and yellows) and blue vitriol (which saddens colours and brings out green shades) (R.Siva, 2007).

B. Natural dyes are obtained from different plants

With over 9000 plants, Turkey is, from the flora standpoint, one of the richest countries in Europe and the Middle East. More than 3000 of these are known as endemics. The number of dye plants in Turkey is relatively high, as a contrast to this floristic richness. In the regions where natural dyeing is alive, the colours obtained from the number of species have been described as follows: yellow from 84 species, green from 41 species, brown from 33 species, grey from 10 species, red from 7 species, pink from 5 species, violet from 4 species, blue from 3 species and black from 3 species (P Miller, 1759).

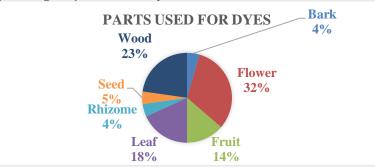

Most natural dyestuffs and stains were derived predominantly from plants and dominated as natural colour sources, creating various colours such as red, yellow, blue, black, brown and a mixture of these nearly all parts of plants such as root, bark, leaf, fruit, wood, seed, flower, etc. produce colouring. It is interesting to note that over 2000 pigments are synthesized through different parts of plants, only about 150 of which have been commercially exploited (R.Siva, 2007).

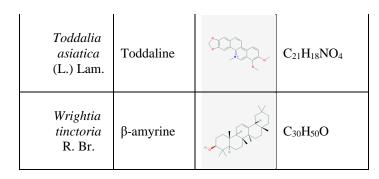
Table 1. Source of different coloured dyes and mordants(W Blith, 1652)

Botanical name	Common name	Colou r	Mordan ts	Parts used
Mallotus philippinensis		Red		
Muell.	Kamala	dye	Alum	Flower
Morinda	Indian	Red		
tinctoria L.	mulberry	dye	Alum	Wood
Rubia		Red		
tinctorium L.	Madder	dye	Alum	Wood

TT	[
Haematoxylon		~ .		
campechianum		Red		
L.	Log wood	dye	-	Wood
Caesalpinia	Caesalpin	Red		
sappan L.	ia	dye	Alum	Wood
Carthamus		Red		
tinctorius L.	Safflower	dye	-	Flower
Rumex	Khat	Red		
dentatus L.	palak	dye	Alum	Wood
Solidago	Golden	Yello		
grandis DC.	rod	w dye	Alum	Flower
Crocus sativus		Yello		
L.	Saffron	w dye	Alum	Flower
		Yello		
Tagetes sp.	Marigold	w dye	Chrome	Flower
Butea	1.1. Bola		Childhit	110.001
monosperma	Flame of	Yello		
(Lam) Taubert.	forest	w dye	Alum	Flower
Alnus	Torest	w uyc	7 Hum	1100001
glutinosa (L.)		Black	Ferrous	
Gaertn.	Alder	dye	sulphate	Bark
Loranthus	Aluci	uyc	suipitate	Dark
pentapetalus	Rofblama	Black	Ferrous	
Roxb.	la	dye	sulphate	Leaf
Terminalia	18	Black	Ferrous	Leal
	Handa			Emit
<i>chebula</i> Retz.	Harda Custard	dye	sulphate	Fruit
Anona		Black		F '
<i>reticulata</i> L.	apple	dye	-	Fruit
Convallaria	x ·1	Orang	Ferrous	TC
<i>majalis</i> L.	Lily	e dye	sulphate	Leaf
		Orang		
Dhalia sp.	Dhalia	e dye	Alum	Flower
Urtica dioica		Orang		
L.	Nettles	e dye	Alum	Leaf
Bixa orellena		Orang		
L.	Annota	e dye	Alum	Seed
Ligustrum		Blue	Alum	
vulgare L.	Pivet	dye	and Iron	Fruit
			_	
Nymphaea		Blue	Iron and	Rhizom
alba L.	Water lily	dye	Acid	e
Isatis tinctoria		Blue		
L.	Woad	dye	-	Leaf

According to Table 1, below is the chart showing the percentage of parts used for dyes.

Here we have list of plants from which dye is extracted as well as they contain some medicinal value in table.


					J.F.Gmel				
Table Botanical Name	2. Dye yieldin Family	ng plants (R Commo n name	Siva, 2007) Parts Used	Colour	Bauhinia				
Abies spectabilis (D. Don.) Spach.	Pinaceae	East Himalaya n silver fir	Cone	Purple or Violet	Bauhinia tomentosa L. Bauhinia	Caesalpinac eae		Leaf	Yellow
Acacia catechu (L.f.) Wild	Mimosacea e	Cutch tree	Bark	Brown / Black	variegate L.	Caesalpinac eae	Mahua tree	Bark	Yellow
Acacia dealbata Link	Mimosacea e	Silver wattle	Bark	Brown / Black	Betula utilis D.Don	Betulaceae	Himalaya n silver birch	Tree gum	Brown
Acanthoph onax trifoliatum (L.) Merr.	Araliaceae		Fruit	Black	Briedelia stipularis L.	Euphorbiac eae		Fruit	Black
Actaea spicata L.	Ranunculac eae	Banberry grape wort	Seed	Black, red, green	Butea monosper ma (Lam) Taubert.	Papilonacea e	Flame of the forest	Flower	Yello, orange
Adathoda vasica Nees.	Acanthacea e	Adalsa	Leaf	Yellow	Caesalpini a sappan	Caesalpinac eae	Bastard teak, Bengal	Wood, bark	Red
Aegle marmelos (L.) Corr.	Rutaceae	Bael fruit	Fruit rind	Yellow	L. Carthamu		kino Safflowe		Red,
Ailanthus triphysa (Dennst.) Alston.	Simaroubac eae		Leaf	Black	tinctorius L. Cassia	Asteraceae Caesalpinac	r Tanner's	Flower Flower,	Yellow
Aloe barbadens is (L.) Burm.f.	Lilliaceae	Curaco aloe; Indian aloe	Whole plant	Red	auriculata L. Cassia occidental is L.	eae Caesalpinac eae	cassia Negro coffee	seed Seed	Yellow Brown
Althea rosea Cav.	Malvaceae	Holly hock	Flower	Red	Cassytha filiformis L.	Lauraceae		Stem	Brown
Ardisia solanacea Roxb.	Myrstinace ae		Berry	Yellow	Cedrela toona				
Arnebia benthami (Wall. ex G. Don)	Boraginace ae	Pan	Undergr ound parts	Purple	Roxb. / <i>Toona</i> <i>ciliata</i> Roem		Red Cedar	Flower, seed, leaf	Yellow /red
Arnebia guttata Bunge	Boraginace ae		Root	Red	Citrus medica L. Clitoria	Rutaceae	Citron, lime	Bark	Black
Azadiracht a indica A. Juzz	Meliaceae	Neem	Bark	Brown	ternatea L. Cordia myxa L.	Fabaceae Boraginace ae		Flower Roots, leaf	Blue Yellow , red
Barleria priontis L.	Acanthacea e		Flower	Yellow	Coscinium fenestratu	Menisperm	Tree	Seed,	
Bassia latifolia Roxb.	Sapotaceae	Butter tree	Bark	Yellow , brown	<i>m</i> (Gaertn.) Clolebr.	aceae	Turmeric	bark, wood	Red
/Madhuca indica				, 010 WII	Crocus sativus L.	Iridaceae	Saffron	Flower	Yellow , orange

Cyanomet ra ramiflora L.	Caesalpinac eae		Wood	Black	Indigofera tinctoria L.	Fabaceae	Indian indigo, common indigo	Leaf	Blue, blue-bl ack
Dioscorea bulbifera L.	Dioscoreac eae	Potato yam, air potato	Tuber	Pale colour	Jatropha curcas L.	Euphorbiac eae	Physic nut, purging	Bark, leaf	Blue
Diospyros embryopte ris Pers.	Ebenaceae	Gaub persimm on	Fruit	Brown	Kirganelia		nut		
Dipteroca rpus turbinatus	Dipterocarp aceae	Common Gurjan	Twig, bark	Yellow , brown	reticulate (Poir) Baill.	Euphorbiac eae		Bark, root	Red
Gaertn.		tree			Lawsonia inermis L.	Lythraceae	Henna	Leaf	Orange , red
Elaeodend ron glaucum (Rottb.)	Celasterace ae		Bark	Red	Lycopus europaeus L.		Gipsy wort	Fruit	Green
Pers. Eugenia jambolana	Myrtaceae		Bark, leaf	Red	Mallotus philippien sis Muell.	Euphorbiac eae	Kamala tree	Fruit	Red
Lam. Euphorbia tirucalli L.	Euphorbiac eae		Wood	Red	Malphigia glabra L.	Malpigiace ae	Barbedos cherry	Flower	Yellow
Flemingia congesta Roxb.	Fabaceae		Pod	Red, Yellow	Melastom a malabathr icum L.		Indian rhododen dron	Fruit	Black, purple
Galium aparine L.	Rubiaceae	Goose grass	Root	Purple	Michelia champaka	Magnoliace	Champak	Flower	Yellow
Galium rotundifoli um L.	Rubiaceae		Root	Yellow , brown	L. Mimusops	ae Sapotaceae	Bullet	Bark	Brown
Galium verum L.	Rubiaceae	Cheese rennet	Root	Yellow , red	elengi L. Morinda Citrifolia	Rubiaceae	wood	Root	Red,
Garcinia mangostan a L.	Guttiferae	Mangost een	Fruit	Black	L. Morinda umbellata	Rubiaceae		Root	Yellow
Gardenia jasminoide s J. Ellis.	Rubiaceae	Cape Jasmine	Fruit	Yellow	L. Naregami a alata	Meliaceae		Leef	Red
<i>Garanium</i> wallichian um D.Don	Geraniacea e	Wallich cranesbill	Fruit, root	Yellow , red, brown	Wight & Arn. Nyctanthe	Menaceae		Leaf	Red
Haematox ylon campechia	Mimosacea e	Log wood	Heart wood	Red	s arbortristi s L. Oldenland	Oleaceae	Coral jasmine	Flower	Yellow
num L. Heliotropi um trigosum	Boraginace ae		Leaf	Black	ia umbellata L.	Rubiaceae	Chay-roo t	Root	Red
L. Indigofera aspalathoi	Fabaceae	Wiry indigo	Leaf	Blue-bl ack	Oxalis corniculat a L.	Oxalidacea e	Indian sorrel	Leaf	Blue
des Vahl. Indigofera	Fabaceae	margo	Leaf	Indigo	Papaver rhoeas L. Peltophor	Papaverace ae	Corn poppy	Petal	Red
hirsuta L.				80	um pterocarp um (DC.)	Caesalpinia ceae	Copper pod	Wood, leaf	Brown, black

V II.						1	T		d histor	4
K.Heyne									d bixin comprise	tropical America, it
									s 70-80%	has become
Perilla									in each	naturalised in
ocimoidea	Labiata	10	mboo F	Fruit	Black				seed.	the hotter
L.	Luoluu	mi	llet	Turt	Diuck					parts of
Pistacia		Ea				D (X7.11.	D tain		India.
intergerri	Anacar			Flower,	Yellow	Butea	Yello w or	Butrin	-	Commonly found
ma L.	eae		stecha le	eaf	1 CHOW	monospe rma	orange			throughout
		e				(Lam)	orange			India, except
Toddalia	D.	Wi	ld r		NZ 11	Taubert.				in the arid
<i>asiatica</i> (L.) Lam.	Rutace	ora	inge	Root	Yellow					region. It
(L.) Lain.										grows on
										black cotton soil, even on
Here we ha	we some	nlants whi	ch contain	dve nig	ments with					soli, even on saline,
its amount (ments with					alkaline and
		.,								swampy
Table 3. I	Pigments	of dye yie	lding plan							badly drained
Plant	Colou	Pigment	Dye		abitat and					soils and in
	r		content	t dis	stribution	C d	N7 - 11 -	Continue:	The shirt C	barren lands.
	obtain ed					Cartham us	Yello w, red	Carthami n	The chief constitue	Cultivated throughout
Acacia	Brown	Catechin,	The ch	ief Oc	curs	tinctorio	w, ica		nt	India. It
catechu	, black	catechuta	constitu		oughout	us L.			carthamin	requires
(L.f.)		nic acid	nts of t	he Ind	dia in dry				ranges	fertile,
Willd.			heartwo		bes of				from 3 to	moisture-rete
					xed forest				6% of the flower.	ntive and well-drained
			from 4 7% a		a variety geological				nower.	soil.
			are		mations	Curcuma	Yello	Curcumi	Percentag	Turmeric
			distribu		d soils.	longa L.	w	n	e of	grown
			d						curcumin	generally as
			through						varies	an annual
			ut t heartwo	the					from 5.4 to 8.7.	crop. It is cultivable
			d fro						10 0.7.	from sea
			the root							level up to
			the							1200 M. it
			branche							thrives in
Adhatod	Yello	Adhatodi	-		stributed					will-drained,
<i>a vasica</i> Nees.	W	c acid carotein,	,		oughout lia, up to					fertile, sandy and clayey,
INCUS.		lutolin,			attitude of					black red
		quercetin			00 m;					soil.
		-		gro	ows on	Indigofer	Blue	Indigotin,	Indigotin	Distributed
					iste land	a		Indican	content	commonly in
				an		tinctoria			varies	the tropical
					riety of bitats and	L.			according to season	region.
				soi					and age	
					metimes				of the	
					ltivated as				plant.	
					dge.				Best	
Bixa	Orang	Bixin,	The d		e small tree found to				grade	
	-			10 10	cound to		1	1	contains	1
orellena	e, red	norbixin	content 5-6%						70-90%	
	-	norbixin	5-6%	by thi	rive at				70-90% in dried	
orellena	-	norbixin	5-6% weight	by the of ele					70-90% in dried leaves.	

lawsonia	Orang	Lawsone	The	It is mainly	Punica	Yello	Petargoni	-	Mostly found
inermis L.	e		principle colouring matter, lawsone is present in dried leaves at a concentra tion of 1.0-1.4%.	cultivated in Tamil Nadu, Madhya Prades and Rajasthan. It can grow on any type of soil from light loam to clay loam but grows best on heavy soil.	granatu m L.	w	don 3,5, diglucosi de		cultivated in many parts of India. The tree is also common and gregarious in the gravel and boulder deposits of dry ravines and similar places in the outer
Mallotus philippen is Muell.	Red	Rottlerin	The yield of powder rottlerin is 1.4-3.7% of the weight of the fresh fruits.	Found throughout India; occasionally ascending to 1500 m in the outer Himalayas. Commonly found in Sal	Rubia cordifoli a L.	Red	Purpurin	Purpurin per cent vary from 2.0 to 4.0	Himalayas up to 1800 m. A hardy climber common thoughout India, ascending to an altitude of 3750 m.
Morinda citrifolia L.	Yello w, red	Morindo ne	Roots are guh out when the plants are 3-4 years	and certain shrub and mixed forests. A small tree distributed throughtout the tropics.	Semecar pus anacardi um L.f.	Black	Bhilawan ol	Bhilawan ol ranging from 28 to 36% of dry weight of seed.	The tree is common in forests often found occuring with Sal, throughout the hotter parts if India.
Oldenlan	Red	Alizarin,	old, dried and sorted for use by the dyeing trade.	Prostrate	Toddalia asiatica (L.) Lam.	Yello w	Toddalin e	-	In South India, the plant is common in the Nilgris and Palani hills, and also
dia umbellat a L.		Rubichol ric acid		herb distributed in the tropical and subtropical region.	Wrightia tinctoria	Blue	β-amyrin e	Leaves are the	in the scrubby jungles of Orissa. Distributed in Rajasthan,
Pterocar pus santalinu s L.	Red	Santalin	Red sanders contain 16% of a colouring matter, santalin (santalic acid).	Grows typically of dry, hilly, often rocky ground and is occasionally fround growing on precipitous hillside.	R. Br.			source of blue dye called Mysore pala-Indi go and β -amyrin e ranges from 3.3-5.0% of dried leaves.	Madhya Pradesh and peninsular India, ascending to an altitude of 1200 m in the hills.

	Wiolecula	ar formula		Curcuma	Curcumin	н Ц. С. Н.	$C_{21}H_{20}O_6$
Plant name	Pigment	Chemical structure	Molecular formula	longa L.			21 20 0
	Catechin		C ₁₅ H ₁₄ O ₆	Indigofera tinctoria	Indigotin	" " "	$C_{16}H_{10}N_2N$ S_2^+
Acocia catechu (L.f.) Willd.	Catechutann ic acid	"d		L.	Indican		C ₁₄ H ₁₇ NO
	Adhatodic			Lawsonia inermis L.	Lawsone	° ,	$C_{10}H_6O_3$
	Acid	C. S.		Mallotus philippeni s Muell.	Rottlerin		C ₃₀ H ₂₈ O ₈
Adhatoda vasica Nees.	Carotene	**************************************		Morinda citrifolia L.	Morindone		C ₁₅ H ₁₀ O ₅
	Luteolin Quercetin		C ₁₅ H ₁₀ O ₆	Oldenland ia	Alizarin	о н о н	$C_{14}H_8O_4$
				umbellata L.	Rubicholric acid		
Bixa orellena L.	Bixin		C ₂₅ H ₃₀ O ₄	Pterocarp us santalinu s L.	Santalin		C ₁₅ H ₁₄ O ₅
Butea monosper	Norbixin	" " " " " " " " " " " " " " " " " " "	C ₂₄ H ₂₈ O ₄	Punica garnatum L.	Pelargonidi n 3,5 diglucoside		C ₂₇ H ₃₁ CIC
ma (Lam) Taubert Carthamu	Butrin		C ₂₇ H ₃₂ O ₁₅	Rubia cordifolia L.	Purpurin		C ₁₄ H ₈ O ₅
s tinctoriou s L.	Carthamin		$C_{43}H_{42}O_{22}$	Semecarp us		- 11	

IV. PREPARATION OF DYES

Two hundred years or more ago it was necessary to produce crops such as indigo and woad, weld and madder based on labour-intensive agronomy, and time-consuming downstream manufacturing processes to prepare the dye (Dogan Y, 2003, W Crokes, 1874, Krishnamurty T., 1993). All of that started dying out in the mid-19th century. Agriculture has since become a technologically advanced industry, yet our understanding of how to grow dye crops has become fossilized.

The dye is usually prepared by boiling water in the crushed powder, but sometimes it is left to soak in cold water. In general, the solution obtained then is used to dye coarse cotton fabrics. Alum is usually employed as a mordant. Butea monosperma (Lam) flowers at Taubert. Make an orange-coloured dye that is not quick and easy to wash away (R.Siva, 2007). The material is steeped in a hot or cold decoction of the flowers for colouring purposes. Whether by first preparing the cloth with alum and wood ash, or by adding these substances to the dye bath, a more permanent colour is created. The indigo dye is produced by steeping the plant in water and permitting fermentation. The solution is then oxidized with air in a separate vessel. Muell of Mallotus philippinensis. Provides an orange colour, used to dye silk and wool. Preparing the B Annatto Dye. Orellena L., when almost ripe, the fruits are harvested. The seeds and pulp are separated from the mature fruit, and water is macerated. These are either ground up in an' annatto paste' or dried and sold as annatto seeds afterwards. Sometimes when the seeds and pulp are macerated with water, the substance is stained through a sieve and the colouring content that settles out is collected and partly heat-evaporated and eventually dried in the light (B Glover and J H Pierce, 1993).

V. CONCLUSION

Natural dyes Vs Synthetic dyes & Conclusion

Without particular conclusive evidence, several people in the textile industry have argued that natural colours are poor have fastness, that the colours produced are of poor quality, that the colours are expensive and difficult to use, and that there is not enough land to grow them (B. Glover, 1995, U Sewekow, 1988, U Sewekow, 1995, D J Hill, 1997). Therefore, they say that natural dyes are not a suitable commercial alternative to synthetic dyes, and therefore they have no future in the textile industry. But this is to miss the point regarding natural colouring, as no one suggests that natural colouring could completely replace synthetic colouring. Natural dyes have environmental and health issues that cannot be ignored. Nevertheless, synthetic colouring itself can pose significant industrial hazards, and its manufacturing is protected by strict COSHH (Control of Substances Hazardous to Health) regulations that are not needed for the production and processing of natural colorants.

REFERENCES

- [1] R.Siva, (2007) Status of natural dyes and dye-yielding plants in India, *Current science*; Vol.92: 916-925.
- [2] Gulrajani, M. L., (1992) Introduction to Natural Dyes, Indian Institute of Technology, New Delhi.
- [3] Ozlenen Erdem Ismal, (2016) Patterns from Nature: Contact Printing, *TEXTILE Association*;81-91.
- [4] M. L. Gulrajani, (2001) Present status of natural dyes, *Indian Journal of Fibre & Textile Research*; Vol.26: 191-201.
- [5] Siva, R., (2003) Assessment of genetic variation in some dye-yielding plants using isozyme data, Ph D thesis, Bharathidasan University, Tiruchirapalli.
- [6] Oktav Bulut M & Akar E, (2012) Journal of Cleaner Production, Vol.32.
- [7] Vanker, P. S., (2000) Chemistry of natural dyes. *Resonance*, Vol.5: 73-80.
- [8] W Blith, (1652) The English improver improved, London.
- [9] Dogan Y, (2003) Economic Botany, Vol.57, 442.
- [10] P Miller, (1759) Gardeners' dictionary, 7th Edn London.
- [11] W Crokes, (1874) *A practical handbook of dying and calico printing* London.
- [12] Krishnamurthy. T., (1993) Minor Forest Products of India, Oxford and IBH, New Delhi 340-364.
- [13] B Glover and J H Pierce, (9193) J.S.D.C., Vol.109: 5.
- [14] B Glover, (1995) Text. Chem. Colorist, Vol.27: 17.
- [15] U Sewekow, (1988) Meiliand Textilber., Vol.4: 271.
- [16] U Sewekow, (1995) Meiliand Textilber., Vol.5: 330.
- [17] D J Hill, (1997) Is there a future for natural dyes? Rev. Prog. Coloration; Vol.27

AUTHORS PROFILE

Maitri Kagathara, Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India.

Dipika J. Dalal, Research Scholar, Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India.

Dr. Hitesh A. Solanki, Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India.